Accéder au contenu
Merck
  • Enhancement of the photovoltaic performance of CH₃NH₃PbI₃ perovskite solar cells through a dichlorobenzene-functionalized hole-transporting material.

Enhancement of the photovoltaic performance of CH₃NH₃PbI₃ perovskite solar cells through a dichlorobenzene-functionalized hole-transporting material.

Chemphyschem : a European journal of chemical physics and physical chemistry (2014-05-28)
Jin-Wook Lee, Sungmin Park, Min Jae Ko, Hae Jung Son, Nam-Gyu Park
RÉSUMÉ

A dichlorobenzene-functionalized hole-transporting material (HTM) is developed for a CH3NH3PbI3-based perovskite solar cell. Notwithstanding the similarity of the frontier molecular orbital energy levels, optical properties, and hole mobility between the functionalized HTM [a polymer composed of 2'-butyloctyl-4,6-dibromo-3-fluorothieno[3,4-b]thiophene-2-carboxylate (TT-BO), 3',4'-dichlorobenzyl-4,6-dibromo-3-fluorothieno[3,4-b]thiophene-2-carboxylate (TT-DCB), and 2,6-bis(trimethyltin)-4,8-bis(2-ethylhexyloxy)benzo[1,2-b:4,5-b']dithiophene (BDT-EH), denoted PTB-DCB21] and the nonfunctionalized polymer [a polymer composed of thieno[3,4-b]thiophene (TT) and benzo[1,2-b:4,5-b']dithiophene (BDT), denoted PTB-BO], a higher power conversion efficiency for PTB-DCB21 (8.7%) than that for PTB-BO (7.4%) is achieved because of a higher photocurrent and voltage. The high efficiency is even obtained without including additives, such as lithium bis(trifluoromethanesulfonyl)imide and/or 4-tert-butylpyridine, that are commonly used to improve the conductivity of the HTM. Transient photocurrent-voltage studies show that the PTB-DCB21-based device exhibits faster electron transport and slower charge recombination; this might be related to better interfacial contact through intermolecular chemical interactions between the perovskite and the 3,4-dichlorobenzyl group in PTB-DCB21.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Méthanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
2-Propanol, suitable for HPLC, 99.9%
Sigma-Aldrich
2-Propanol, ACS reagent, ≥99.5%
Sigma-Aldrich
Méthanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Méthanol, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Méthanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Butan-1-ol, 99.9%
Sigma-Aldrich
2-Propanol, HPLC Plus, for HPLC, GC, and residue analysis, 99.9%
Sigma-Aldrich
Butan-1-ol, ACS reagent, ≥99.4%
Sigma-Aldrich
2-Propanol, meets USP testing specifications
Sigma-Aldrich
Méthanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
2-Propanol, for molecular biology, BioReagent, ≥99.5%
Sigma-Aldrich
Méthanol, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
Butan-1-ol, suitable for HPLC, ≥99.7%
Sigma-Aldrich
2-Propanol, Laboratory Reagent, ≥99.5%
Sigma-Aldrich
2-Propanol, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
Méthanol, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
Méthanol, anhydrous, 99.8%
Sigma-Aldrich
Méthanol, BioReagent, ≥99.93%
Sigma-Aldrich
Alcool isopropylique, ≥99.7%, FCC, FG
Sigma-Aldrich
Méthanol, Absolute - Acetone free
Sigma-Aldrich
Méthanol, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
2-Propanol, anhydrous, 99.5%
Sigma-Aldrich
2-Propanol, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
2-Propanol, puriss. p.a., ACS reagent, ≥99.8% (GC)
Sigma-Aldrich
Lauric acid, ≥98%, FCC, FG
Sigma-Aldrich
Méthanol, ACS reagent, ≥99.8%
Sigma-Aldrich
2-Propanol, electronic grade, 99.999% trace metals basis
USP
Méthanol, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Butan-1-ol, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.5% (GC)