Accéder au contenu
Merck
  • Experimental and computational investigation of the effect of hydrophobicity on aggregation and osteoinductive potential of BMP-2-derived peptide in a hydrogel matrix.

Experimental and computational investigation of the effect of hydrophobicity on aggregation and osteoinductive potential of BMP-2-derived peptide in a hydrogel matrix.

Tissue engineering. Part A (2014-07-23)
Seyedsina Moeinzadeh, Danial Barati, Samaneh K Sarvestani, Tahereh Karimi, Esmaiel Jabbari
RÉSUMÉ

An attractive approach to reduce the undesired side effects of bone morphogenetic proteins (BMPs) in regenerative medicine is to use osteoinductive peptide sequences derived from BMPs. Although the structure and function of BMPs have been studied extensively, there is limited data on structure and activity of BMP-derived peptides immobilized in hydrogels. The objective of this work was to investigate the effect of concentration and hydrophobicity of the BMP-2 peptide, corresponding to residues 73-92 of the knuckle epitope of BMP-2 protein, on peptide aggregation and osteogenic differentiation of human mesenchymal stem cells encapsulated in a polyethylene glycol (PEG) hydrogel. The peptide hydrophobicity was varied by capping PEG chain ends with short lactide segments. The BMP-2 peptide with a positive index of hydrophobicity had a critical micelle concentration (CMC) and formed aggregates in aqueous solution. Based on simulation results, there was a slight increase in the concentration of free peptide in solution with 1000-fold increase in peptide concentration. The dose-osteogenic response curve of the BMP-2 peptide was in the 0.0005-0.005 mM range, and osteoinductive potential of the BMP-2 peptide was significantly less than that of BMP-2 protein even at 1000-fold higher concentrations, which was attributed to peptide aggregation. Further, the peptide or PEG-peptide aggregates had significantly higher interaction energy with the cell membrane compared with the free peptide, which led to a higher nonspecific interaction with the cell membrane and loss of osteoinductive potential. Conjugation of the BMP-2 peptide to PEG increased CMC and osteoinductive potential of the peptide whereas conjugation to lactide-capped PEG reduced CMC and osteoinductive potential of the peptide. Experimental and simulation results revealed that osteoinductive potential of the BMP-2 peptide is correlated with its CMC and the free peptide concentration in aqueous medium and not the total concentration.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Acétonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Diméthylsulfoxyde, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
Diméthylsulfoxyde, ACS reagent, ≥99.9%
Sigma-Aldrich
Tetrahydrofurane, inhibitor-free, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Acide trifluoroacétique, ReagentPlus®, 99%
Sigma-Aldrich
Acide trifluoroacétique, suitable for HPLC, ≥99.0%
Sigma-Aldrich
Diméthylsulfoxyde, for molecular biology
Sigma-Aldrich
Dichlorométhane, suitable for HPLC, ≥99.8%, contains amylene as stabilizer
Sigma-Aldrich
Diméthylsulfoxyde, suitable for HPLC, ≥99.7%
Sigma-Aldrich
Acétonitrile, HPLC Plus, ≥99.9%
Sigma-Aldrich
Dichlorométhane, contains 40-150 ppm amylene as stabilizer, ACS reagent, ≥99.5%
Sigma-Aldrich
N,N-Diméthylformamide, ACS reagent, ≥99.8%
Sigma-Aldrich
Diméthylsulfoxyde, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
N,N-Diméthylformamide, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Tetrahydrofurane, contains 250 ppm BHT as inhibitor, ACS reagent, ≥99.0%
Sigma-Aldrich
Diméthylsulfoxyde, ReagentPlus®, ≥99.5%
Sigma-Aldrich
Dichlorométhane, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%, contains 50-150 ppm amylene as stabilizer
Sigma-Aldrich
Acide trifluoroacétique, puriss. p.a., suitable for HPLC, ≥99.0% (GC)
Sigma-Aldrich
Acétonitrile, ACS reagent, ≥99.5%
Sigma-Aldrich
Diméthylsulfoxyde, ≥99.5% (GC), suitable for plant cell culture
Sigma-Aldrich
Acétonitrile, for HPLC, for UV, ≥99.9% (GC)
Sigma-Aldrich
Diméthylsulfoxyde, puriss. p.a., ACS reagent, ≥99.9% (GC)
Sigma-Aldrich
Acétonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
L-acide ascorbique, powder, suitable for cell culture, γ-irradiated
Sigma-Aldrich
Acide acrylique, anhydrous, contains 200 ppm MEHQ as inhibitor, 99%
Sigma-Aldrich
L-Glutamine, meets USP testing specifications, suitable for cell culture, 99.0-101.0%, from non-animal source
Sigma-Aldrich
L-acide ascorbique, BioXtra, ≥99.0%, crystalline
Sigma-Aldrich
4-(Dimethylamino)pyridine, ReagentPlus®, ≥99%
Sigma-Aldrich
N,N-Diisopropyléthylamine, 99.5%, biotech. grade
Sigma-Aldrich
N,N-Diméthylformamide, anhydrous, 99.8%