Accéder au contenu
Merck
  • Generalized model of electromigration with 1:1 (analyte:selector) complexation stoichiometry: part II. Application to dual systems and experimental verification.

Generalized model of electromigration with 1:1 (analyte:selector) complexation stoichiometry: part II. Application to dual systems and experimental verification.

Journal of chromatography. A (2015-02-11)
Ludmila Müllerová, Pavel Dubský, Bohuslav Gaš
RÉSUMÉ

Interactions among analyte forms that undergo simultaneous dissociation/protonation and complexation with multiple selectors take the shape of a highly interconnected multi-equilibrium scheme. This makes it difficult to express the effective mobility of the analyte in these systems, which are often encountered in electrophoretical separations, unless a generalized model is introduced. In the first part of this series, we presented the theory of electromigration of a multivalent weakly acidic/basic/amphoteric analyte undergoing complexation with a mixture of an arbitrary number of selectors. In this work we demonstrate the validity of this concept experimentally. The theory leads to three useful perspectives, each of which is closely related to the one originally formulated for simpler systems. If pH, IS and the selector mixture composition are all kept constant, the system is treated as if only a single analyte form interacted with a single selector. If the pH changes at constant IS and mixture composition, the already well-established models of a weakly acidic/basic analyte interacting with a single selector can be employed. Varying the mixture composition at constant IS and pH leads to a situation where virtually a single analyte form interacts with a mixture of selectors. We show how to switch between the three perspectives in practice and confirm that they can be employed interchangeably according to the specific needs by measurements performed in single- and dual-selector systems at a pH where the analyte is fully dissociated, partly dissociated or fully protonated. Weak monoprotic analyte (R-flurbiprofen) and two selectors (native β-cyclodextrin and monovalent positively charged 6-monodeoxy-6-monoamino-β-cyclodextrin) serve as a model system.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Acide chlorhydrique, ACS reagent, 37%
Sigma-Aldrich
Hydroxyde de sodium, ACS reagent, ≥97.0%, pellets
Sigma-Aldrich
Acide chlorhydrique, ACS reagent, 37%
Sigma-Aldrich
Hydroxyde de sodium, reagent grade, ≥98%, pellets (anhydrous)
Sigma-Aldrich
Acide formique, reagent grade, ≥95%
Sigma-Aldrich
Hydroxyde de sodium solution, 50% in H2O
Sigma-Aldrich
Chlorure d'hydrogène solution, 4.0 M in dioxane
Sigma-Aldrich
Acide formique, ACS reagent, ≥96%
Sigma-Aldrich
Acide formique, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥98%
Sigma-Aldrich
Hydroxyde de sodium solution, BioUltra, for molecular biology, 10 M in H2O
Sigma-Aldrich
Acide chlorhydrique solution, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Hydroxyde de sodium solution, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Hydroxyde de sodium, BioXtra, ≥98% (acidimetric), pellets (anhydrous)
Sigma-Aldrich
Acide chlorhydrique, 37 wt. % in H2O, 99.999% trace metals basis
Sigma-Aldrich
Acide chlorhydrique, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., fuming, ≥37%, APHA: ≤10
Sigma-Aldrich
Hydroxyde de sodium, puriss. p.a., ACS reagent, reag. Ph. Eur., K ≤0.02%, ≥98%, pellets
Sigma-Aldrich
Acide chlorhydrique, meets analytical specification of Ph. Eur., BP, NF, fuming, 36.5-38%
Sigma-Aldrich
Hydroxyde de sodium, reagent grade, 97%, powder
Sigma-Aldrich
Acide chlorhydrique, 36.5-38.0%, BioReagent, for molecular biology
Sigma-Aldrich
Chlorure d'hydrogène solution, 2.0 M in diethyl ether
Sigma-Aldrich
Lithium hydroxide monohydrate, ACS reagent, ≥98.0%
Sigma-Aldrich
Hydroxyde de sodium, puriss., meets analytical specification of Ph. Eur., BP, NF, E524, 98-100.5%, pellets
Sigma-Aldrich
Acide formique, puriss., meets analytical specifications of DAC, FCC, 98.0-100%
Sigma-Aldrich
Acide formique, ACS reagent, ≥88%
Sigma-Aldrich
Hydroxyde de sodium, pellets, semiconductor grade, 99.99% trace metals basis
Sigma-Aldrich
Hydroxyde de sodium solution, 5.0 M
Supelco
Acide chlorhydrique solution, volumetric, 0.1 M HCl (0.1N), endotoxin free
Sigma-Aldrich
Nitromethane, ACS reagent, ≥95%
Sigma-Aldrich
Hydroxyde de sodium, puriss. p.a., ACS reagent, K ≤0.02%, ≥98.0% (T), pellets
Sigma-Aldrich
Nitromethane, ReagentPlus®, ≥99.0%