Accéder au contenu
Merck

RNA editing in eag potassium channels: biophysical consequences of editing a conserved S6 residue.

Channels (Austin, Tex.) (2012-10-16)
Mary Y Ryan, Rachel Maloney, Jeffrey D Fineberg, Robert A Reenan, Richard Horn
RÉSUMÉ

RNA editing at four sites in eag, a Drosophila voltage-gated potassium channel, results in the substitution of amino acids into the final protein product that are not encoded by the genome. These sites and the editing alterations introduced are K467R (Site 1, top of the S6 segment), Y548C, N567D and K699R (sites 2-4, within the cytoplasmic C-terminal domain). We mutated these residues individually and expressed the channels in Xenopus oocytes. A fully edited construct (all four sites) has the slowest activation kinetics and a paucity of inactivation, whereas the fully unedited channel exhibits the fastest activation and most dramatic inactivation. Editing Site 1 inhibits steady-state inactivation. Mutating Site 1 to the neutral residues resulted in intermediate inactivation phenotypes and a leftward shift of the peak current-voltage relationship. Activation kinetics display a Cole-Moore shift that is enhanced by RNA editing. Normalized open probability relationships for 467Q, 467R and 467K are superimposable, indicating little effect of the mutations on steady-state activation. 467Q and 467R enhance instantaneous inward rectification, indicating a role of this residue in ion permeation. Intracellular tetrabutylammonium blocks 467K significantly better than 467R. Block by intracellular, but not extracellular, tetraethylammonium interferes with inactivation. The fraction of inactivated current is reduced at higher extracellular Mg(+2) concentrations, and channels edited at Site 1 are more sensitive to changes in extracellular Mg(+2) than unedited channels. These results show that even a minor change in amino acid side-chain chemistry and size can have a dramatic impact on channel biophysics, and that RNA editing is important for fine-tuning the channel's function.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Fluorure de tétrabutylammonium solution, 1.0 M in THF
Sigma-Aldrich
Phosphate de tétrabutylammonium monobasique solution, 1.0 M in H2O
Sigma-Aldrich
Chlorure de tétrabutylammonium, ≥97.0% (NT)
Sigma-Aldrich
Iodure de tétrabutylammonium, reagent grade, 98%
Sigma-Aldrich
Hydroxyde de tétraéthylammonium solution, 35 wt. % in H2O
Sigma-Aldrich
Tetraethylammonium chloride, ≥98% (titration)
Sigma-Aldrich
Bromure de tétraéthylammonium, reagent grade, 98%
Sigma-Aldrich
Tetrabutylammonium perchlorate, ≥95.0% (T)
Sigma-Aldrich
Tetrabutylammonium cyanide, 95%
Sigma-Aldrich
Bromure de tétraéthylammonium, ReagentPlus®, 99%
Sigma-Aldrich
Tetrabutylammonium nitrate, 97%
Sigma-Aldrich
Hydroxyde de tétraéthylammonium solution, 20 wt. % in H2O
Sigma-Aldrich
Iodure de tétrabutylammonium, ≥99.0% (AT)
Sigma-Aldrich
Bromure de tétrabutylammonium, ACS reagent, ≥98.0%
Sigma-Aldrich
Tetrabutylammonium azide
Sigma-Aldrich
Fluorure de tétrabutylammonium solution, 75 wt. % in H2O
Sigma-Aldrich
Tetrabutylammonium hydroxide solution, 40 wt. % in H2O
Sigma-Aldrich
Tetrabutylammonium hydroxide solution, 1.0 M in methanol
Sigma-Aldrich
Tetrabutylammonium hydrogensulfate, 97%
Sigma-Aldrich
Tetraethylammonium iodide, 98%
Sigma-Aldrich
Tetraethylammonium chloride, BioUltra, for molecular biology, ≥99.0% (AT)
Supelco
Tetrabutylammonium hydroxide solution, ~40% in water, suitable for ion chromatography
Sigma-Aldrich
Hydroxyde de tétraéthylammonium solution, ~25% in methanol (~1.5 M)
Sigma-Aldrich
Bromure de tétrabutylammonium solution, 50 wt. % in H2O
Sigma-Aldrich
Bromure de tétrabutylammonium, ReagentPlus®, ≥99.0%
Sigma-Aldrich
Tetraethylammonium chloride hydrate
Sigma-Aldrich
Bisulfate de tétrabutylammonium, puriss., ≥99.0% (T)
Sigma-Aldrich
Phosphate de tétrabutylammonium monobasic, puriss., 99% (T)
Sigma-Aldrich
Tetrabutylammonium bisulfate solution, ~55% in H2O
Sigma-Aldrich
Tetrabutylammonium cyanide, technical, ≥80%