Recommended Products
Quality Level
Assay
99%
form
powder, crystals or chunks
mp
432 °C (lit.)
density
6.473 g/mL at 25 °C (lit.)
SMILES string
Br[Ag]
InChI
1S/Ag.BrH/h;1H/q+1;/p-1
InChI key
ADZWSOLPGZMUMY-UHFFFAOYSA-M
Looking for similar products? Visit Product Comparison Guide
Signal Word
Warning
Hazard Statements
Precautionary Statements
Hazard Classifications
Aquatic Acute 1 - Aquatic Chronic 1
Storage Class Code
13 - Non Combustible Solids
WGK
WGK 3
Flash Point(F)
Not applicable
Flash Point(C)
Not applicable
Certificates of Analysis (COA)
Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Customers Also Viewed
Chemistry (Weinheim an der Bergstrasse, Germany), 18(15), 4620-4626 (2012-03-07)
Synthesis of inorganic single crystals with exposed high-reactivity facets is a desirable target in the catalytic chemistry field. Polyhedral AgBr microcrystals with an increased percentage of exposed high-reactivity {111} facets have been successfully prepared for the first time, and the
Environmental science & technology, 46(7), 4042-4050 (2012-03-06)
A ternary Ag/AgBr/TiO(2) nanotube array electrode with enhanced visible-light activity was synthesized by a two-step approach including electrochemical process of anodization and an in situ photoassisted deposition strategy. The dramatically enhanced photoelectrocatalytic activity of the composite electrode was evaluated via
Dalton transactions (Cambridge, England : 2003), 42(7), 2366-2370 (2013-01-08)
The AgBr and Ag(2)Se nanoparticles (NPs) have been synthesized for the first time from two single source precursors ([Ag(2)(L)(2)Br(2)] (1) and [Ag(L-HBr)(2)]BF(4) (2) respectively) designed using the same ligand 3-benzyl-1-(2-phenylselanyl-ethyl)-3H-imidazolium bromide (L). The ODE-ODA-OA (1 : 1 : 2) and
Chemistry (Weinheim an der Bergstrasse, Germany), 18(20), 6360-6369 (2012-04-21)
Noble metal nanoparticles (NPs) are often used as electron scavengers in conventional semiconductor photocatalysis to suppress electron-hole (e(-)-h(+) ) recombination and promote interfacial charge transfer, and thus enhance photocatalytic activity of semiconductors. In this contribution, it is demonstrated that noble
Dalton transactions (Cambridge, England : 2003), 41(16), 4866-4870 (2012-03-08)
A plasmonic Ag/AgBr nanohybrid has been synthesized by in situ thermal reduction of AgBr nanoparticles in polyols. This directly converted Ag/AgBr shows significant absorption over the full visible spectrum. The enhanced light absorption in the spectral region of 450 nm
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service