Skip to Content
Merck
All Photos(1)

Documents

746991

Sigma-Aldrich

Polystyrene-block-poly(acrylic acid)

Synonym(s):

Poly(styrene)-block-poly(acrylic acid)

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C4H6N(C8H8)m(C3H4O2)nH
UNSPSC Code:
12352100
NACRES:
NA.23

form

solid

Quality Level

mol wt

Mn 27,000-31,000 (polystyrene)
Mn 31,000-37,000 (total)
Mn 4,000-6,000 (poly(acrylic acid))

mp

258-263 °C

PDI

≤1.3

Looking for similar products? Visit Product Comparison Guide

Application

Polystyrene-block-polyacrylic acid is a diblock copolymer used for making polymeric vesicles (polymersomes) and other encapsulation applications.1-9 This PS-block-PAA copolymer is 15 wt. % AA; and should form vesicles in water in the 100 nm range. The polystyrene degree of polymerization (DP) is 275 and the polyacrylic acid DP is 50.

Legal Information

Sold for research purposes only.  Not for use in humans.  Before opening or using this product, please read the following terms and conditions.  Use of this product shall constitute acknowledgement and acceptance of these terms and conditions: Use of this product may be covered by one or more of the following US patents and corresponding claims outside the US: 7,714,075; 7,250,479; 7,666,962; 6,642,318; 6,747,111, and pending applications (W2010/8356).  For details contact Aldrich Chemical Company, Inc.

Pictograms

Exclamation mark

Signal Word

Warning

Hazard Statements

Hazard Classifications

Eye Irrit. 2 - Skin Irrit. 2 - STOT SE 3

Target Organs

Respiratory system

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Preparation of orthogonally-functionalized core Click cross-linked nanoparticles
Rachel K. O?Reilly,
New. J. Chem., 31, 718-724 (2007)
Qiang Tian et al.
Langmuir : the ACS journal of surfaces and colloids, 36(17), 4820-4826 (2020-04-11)
The interactions between natural colloidal organic matter and actinides in solutions are complex and not fully understood. In this work, a crew-cut polystyrene-b-poly(acry1ic acid) (PS-b-PAA) micelle is proposed as a model particle for humic acid (HA) colloid with the aim
Multiple Morphologies of PAA-b-PSt Assemblies throughout RAFT Dispersion Polymerization of Styrene with PAA Macro-CTA
Wei-Dong He,
Macromolecules, 44, 3358-3365 (2011)
Block Length Dependence of Morphological Phase Diagrams of theTernary System of PS-b-PAA/Dioxane/H2O
Hongwei Shen and Adi Eisenberg
Macromolecules, 33(7), 2561-2561 (2000)
Multiple Morphologies and Characteristics of ?Crew-Cut? Micelle-like Aggregates of Polystyrene-b-poly(acrylic acid) Diblock Copolymers in Aqueous Solutions
Lifeng Zhang and Adi Eisenberg
Journal of the American Chemical Society, 118, 3168-3181 (1996)

Articles

Reversible addition–fragmentation chain transfer (RAFT) polymerization is rapidly moving to the forefront in construction of drug and gene delivery vehicles.

Reversible addition–fragmentation chain transfer (RAFT) polymerization is rapidly moving to the forefront in construction of drug and gene delivery vehicles.

Reversible addition–fragmentation chain transfer (RAFT) polymerization is rapidly moving to the forefront in construction of drug and gene delivery vehicles.

Reversible addition–fragmentation chain transfer (RAFT) polymerization is rapidly moving to the forefront in construction of drug and gene delivery vehicles.

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service