Small (Weinheim an der Bergstrasse, Germany), 8(10), 1596-1606 (2012-03-14)
The use of biodegradable polymeric nanoparticles (NPs) for controlled drug delivery has shown significant therapeutic potential. Polyaspartic acid and polylactic acid are the most intensively studied biodegradable polymers. In the present study, novel amphiphilic biodegradable co-polymer NPs, poly(L-aspartic acid-co-lactic acid)
International journal of nanomedicine, 7, 1313-1328 (2012-03-16)
There is an urgent need to develop drug-loaded biocompatible nanoscale packages with improved therapeutic efficacy for effective clinical treatment. To address this need, a novel poly (2-hydroxyethyl methacrylate)-poly (lactide)-1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine [PHEMA-g-(PLA-DPPE)] copolymer was designed and synthesized to enable these nanoparticles to
A pH controlled flow cell device was constructed to allow electrophoretic movement of charged lipids and membrane associated proteins in supported phospholipid bilayers. The device isolated electrolysis products near the electrodes from the electrophoresis process within the bilayer. This allowed
In a minimalist design approach, a synthetic peptide MSI-367 [(KFAKKFA)(3)-NH(2)] was designed and synthesized with the objective of generating cell-selective nonlytic peptides, which have a significant bearing on cell targeting. The peptide exhibited potent activity against both bacteria and fungi
Colloids and surfaces. B, Biointerfaces, 102, 833-841 (2012-10-31)
Novel biodegradable amphiphilic copolymer nanoparticles based on gelatin, poly(lactide) and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE) (gelatin-co-PLA-DPPE) have been successfully fabricated. In order to estimate the feasibility as drug carriers, an anti-tumor model drug doxorubicin hydrochloride salt (DOX) was incorporated into polymeric nanoparticles by
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.