396141
Strontium titanate
powder, 99%
Synonym(s):
Strontium titanium trioxide
Sign Into View Organizational & Contract Pricing
All Photos(3)
About This Item
Recommended Products
Assay
99%
form
powder
reaction suitability
reagent type: catalyst
core: titanium
mp
2060 °C (lit.)
density
4.81 g/mL at 25 °C (lit.)
SMILES string
[Sr++].[O-][Ti]([O-])=O
InChI
1S/3O.Sr.Ti/q;2*-1;+2;
InChI key
VEALVRVVWBQVSL-UHFFFAOYSA-N
Looking for similar products? Visit Product Comparison Guide
Storage Class Code
11 - Combustible Solids
WGK
WGK 3
Flash Point(F)
Not applicable
Flash Point(C)
Not applicable
Personal Protective Equipment
dust mask type N95 (US), Eyeshields, Gloves
Choose from one of the most recent versions:
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Customers Also Viewed
Journal of the American Chemical Society, 134(4), 1974-1977 (2012-01-28)
A strategy of reaction-environment modulation was employed to change the surface property of a semiconductor photocatalyst to enhance its photocatalytic performance. Surface alkalinization induced by a high alkalinity of the solution environment significantly shifted the surface energy band of a
Polar liquid molecule induced transport property modulation at LaAlO₃/SrTiO₃ heterointerface.
Advanced materials (Deerfield Beach, Fla.), 24(19), 2598-2602 (2012-04-13)
Tailoring interface structure in highly strained YSZ/STO heterostructures.
Advanced materials (Deerfield Beach, Fla.), 23(44), 5268-5274 (2012-02-03)
Nature nanotechnology, 6(6), 343-347 (2011-04-19)
Devices that confine and process single electrons represent an important scaling limit of electronics. Such devices have been realized in a variety of materials and exhibit remarkable electronic, optical and spintronic properties. Here, we use an atomic force microscope tip
Nanotechnology, 23(49), 495715-495715 (2012-11-17)
The transport properties of ultra-thin SrTiO(3) (STO) layers grown over YBa(2)Cu(3)O(7) electrodes were studied by conductive atomic force microscopy at the nano-scale. A very good control of the barrier thickness was achieved during the deposition process. A phenomenological approach was
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service