Accéder au contenu
Merck

TBC1D9 regulates TBK1 activation through Ca2+ signaling in selective autophagy.

Nature communications (2020-02-09)
Takashi Nozawa, Shunsuke Sano, Atsuko Minowa-Nozawa, Hirotaka Toh, Shintaro Nakajima, Kazunori Murase, Chihiro Aikawa, Ichiro Nakagawa
RÉSUMÉ

Invading microbial pathogens can be eliminated selectively by xenophagy. Ubiquitin-mediated autophagy receptors are phosphorylated by TANK-binding kinase 1 (TBK1) and recruited to ubiquitinated bacteria to facilitate autophagosome formation during xenophagy, but the molecular mechanism underlying TBK1 activation in response to microbial infection is not clear. Here, we show that bacterial infection increases Ca2+ levels to activate TBK1 for xenophagy via the Ca2+-binding protein TBC1 domain family member 9 (TBC1D9). Mechanistically, the ubiquitin-binding region (UBR) and Ca2+-binding motif of TBC1D9 mediate its binding with ubiquitin-positive bacteria, and TBC1D9 knockout suppresses TBK1 activation and subsequent recruitment of the ULK1 complex. Treatment with a Ca2+ chelator impairs TBC1D9-ubiquitin interactions and TBK1 activation during xenophagy. TBC1D9 is also recruited to damaged mitochondria through its UBR and Ca2+-binding motif, and is required for TBK1 activation during mitophagy. These results indicate that TBC1D9 controls TBK1 activation during xenophagy and mitophagy through Ca2+-dependent ubiquitin-recognition.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Millipore
Gel d'affinité ANTI-FLAG® M2, purified immunoglobulin, buffered aqueous glycerol solution
Sigma-Aldrich
Anticorps anti-ubiquitine, spécifique de la Lys63, clone Apu3, monoclonal de lapin, clone Apu3, from rabbit
Sigma-Aldrich
Xestospongin C, film
Sigma-Aldrich
MISSION® esiRNA, targeting human ULK1
Sigma-Aldrich
MISSION® esiRNA, targeting human RB1CC1
Sigma-Aldrich
MISSION® esiRNA, targeting human ITPR3
Sigma-Aldrich
MISSION® esiRNA, targeting human ITPR2
Sigma-Aldrich
MISSION® esiRNA, targeting human ULK2
Sigma-Aldrich
MISSION® esiRNA, targeting human ITPR1
Sigma-Aldrich
MISSION® esiRNA, targeting human TBC1D9