Accéder au contenu
Merck

Potassium as a pluripotency-associated element identified through inorganic element profiling in human pluripotent stem cells.

Scientific reports (2017-07-12)
Victor J T Lin, Ashwini Zolekar, Yi Shi, Bhuvaneswari Koneru, Slobodan Dimitrijevich, Anthony J Di Pasqua, Yu-Chieh Wang
RÉSUMÉ

Despite their well-known function in maintaining normal cell physiology, how inorganic elements are relevant to cellular pluripotency and differentiation in human pluripotent stem cells (hPSCs) has yet to be systematically explored. Using total reflection X-ray fluorescence (TXRF) spectrometry and inductively coupled plasma mass spectrometry (ICP-MS), we analyzed the inorganic components of human cells with isogenic backgrounds in distinct states of cellular pluripotency. The elemental profiles revealed that the potassium content of human cells significantly differs when their cellular pluripotency changes. Pharmacological treatment that alters cell membrane permeability to potassium affected the maintenance and establishment of cellular pluripotency via multiple mechanisms in bona fide hPSCs and reprogrammed cells. Collectively, we report that potassium is a pluripotency-associated inorganic element in human cells and provide novel insights into the manipulation of cellular pluripotency in hPSCs by regulating intracellular potassium.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Anti-NANOG Antibody, clone 7F7.1, clone 7F7.1, from mouse
Sigma-Aldrich
Anti-NANOG Antibody, clone 7F7.1, Alexa Fluor 488 conjugate, clone 7F7.1, from mouse, ALEXA FLUOR 488