Skip to Content
Merck
All Photos(3)

Key Documents

131709

Sigma-Aldrich

Pyrrole

reagent grade, 98%

Synonym(s):

Azole, Divinylenimine, Imidole

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C4H5N
CAS Number:
Molecular Weight:
67.09
Beilstein:
1159
EC Number:
MDL number:
UNSPSC Code:
12352100
eCl@ss:
39151603
PubChem Substance ID:
NACRES:
NA.22

grade

reagent grade

Quality Level

vapor density

2.31 (vs air)

Assay

98%

form

liquid

refractive index

n20/D 1.508 (lit.)

bp

131 °C (lit.)

mp

−23 °C (lit.)

density

0.967 g/mL at 25 °C (lit.)

storage temp.

2-8°C

SMILES string

c1cc[nH]c1

InChI

1S/C4H5N/c1-2-4-5-3-1/h1-5H

InChI key

KAESVJOAVNADME-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

Pyrrole is a heterocyclic aromatic compound that can undergo electrophilic aromatic substitution.

Application

Pyrrole was used in the electropolymerisation of macroporous conducting polymer films. It was also used to study the hydrogen-bond mediated coupling of 1,2,3-triazole to pyrrole.

Signal Word

Danger

Hazard Statements

Hazard Classifications

Acute Tox. 3 Oral - Acute Tox. 4 Inhalation - Eye Dam. 1 - Flam. Liq. 3

Storage Class Code

3 - Flammable liquids

WGK

WGK 2

Flash Point(F)

96.8 °F - closed cup

Flash Point(C)

36 °C - closed cup

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Articles

From Form to Function: Molding Porous Materials in Three Dimensions by Colloidal Crystal Templating

From Form to Function: Molding Porous Materials in Three Dimensions by Colloidal Crystal Templating

From Form to Function: Molding Porous Materials in Three Dimensions by Colloidal Crystal Templating

From Form to Function: Molding Porous Materials in Three Dimensions by Colloidal Crystal Templating

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service