Accéder au contenu
MilliporeSigma

Memory T cell-driven differentiation of naive cells impairs adoptive immunotherapy.

The Journal of clinical investigation (2015-12-15)
Christopher A Klebanoff, Christopher D Scott, Anthony J Leonardi, Tori N Yamamoto, Anthony C Cruz, Claudia Ouyang, Madhu Ramaswamy, Rahul Roychoudhuri, Yun Ji, Robert L Eil, Madhusudhanan Sukumar, Joseph G Crompton, Douglas C Palmer, Zachary A Borman, David Clever, Stacy K Thomas, Shashankkumar Patel, Zhiya Yu, Pawel Muranski, Hui Liu, Ena Wang, Francesco M Marincola, Alena Gros, Luca Gattinoni, Steven A Rosenberg, Richard M Siegel, Nicholas P Restifo
RÉSUMÉ

Adoptive cell transfer (ACT) of purified naive, stem cell memory, and central memory T cell subsets results in superior persistence and antitumor immunity compared with ACT of populations containing more-differentiated effector memory and effector T cells. Despite a clear advantage of the less-differentiated populations, the majority of ACT trials utilize unfractionated T cell subsets. Here, we have challenged the notion that the mere presence of less-differentiated T cells in starting populations used to generate therapeutic T cells is sufficient to convey their desirable attributes. Using both mouse and human cells, we identified a T cell-T cell interaction whereby antigen-experienced subsets directly promote the phenotypic, functional, and metabolic differentiation of naive T cells. This process led to the loss of less-differentiated T cell subsets and resulted in impaired cellular persistence and tumor regression in mouse models following ACT. The T memory-induced conversion of naive T cells was mediated by a nonapoptotic Fas signal, resulting in Akt-driven cellular differentiation. Thus, induction of Fas signaling enhanced T cell differentiation and impaired antitumor immunity, while Fas signaling blockade preserved the antitumor efficacy of naive cells within mixed populations. These findings reveal that T cell subsets can synchronize their differentiation state in a process similar to quorum sensing in unicellular organisms and suggest that disruption of this quorum-like behavior among T cells has potential to enhance T cell-based immunotherapies.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Anticorps anti-triméthyl-histone H3 (Lys27), Upstate®, from rabbit
Sigma-Aldrich
2-Deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]-D-glucose, ≥97% (HPLC)
Sigma-Aldrich
Anti-GAPDH Antibody, from chicken, purified by affinity chromatography