Accéder au contenu
MilliporeSigma

Effects of Different Surface Treatments on Composite Repairs.

The journal of adhesive dentistry (2015-11-04)
Graziela Ribeiro Batista, Maria Beatriz Beber Kamozaki, Natália Cortez Gutierrez, Taciana Marco Ferraz Caneppele, Carlos Rocha Gomes Torres
RÉSUMÉ

To evaluate the influence of different surface treatments on roughness and bond strength of composite repairs. 120 truncated conical specimens were prepared with composite Grandio SO (VOCO) and submitted to 5000 thermal cycles. Specimens were divided into 12 groups (n = 10) regarding the surface treatments: negative control (NC), without treatment; medium-grit diamond bur (MGD); coarse-grit diamond bur (CGD); conventional carbide bur (ConC); crosscut carbide bur (CutC); chemical vapor deposition diamond bur (CVD); sandblasting with aluminum oxide (AlO); Er:YAG laser 200 mJ/10 Hz (Er200); Er:YAG laser 60 mJ/10 Hz (Er50); Nd:YAG laser 120 mJ/15 Hz (Nd120); Nd:YAG laser 60 mJ/ 15Hz (Nd60); air abrasion with 110-μm silica modified aluminum oxide (Rocatec Plus-3M) (SIL). After the surface treatments, the surface roughness (Ra) was measured using a profilometer, and then the adhesive system Admira Bond (VOCO) was applied. Another truncated conical restoration was built up with the same composite over the bonded area of each specimen. In order to evaluate the cohesive strength, double-cone specimens were made and considered as a control group (CoheC). The specimens were submitted to tensile bond strength testing and the obtained data (MPa) were evaluated by one-way ANOVA, Tukey's and correlation tests. ANOVA showed significant differences among experimental groups for roughness and adhesive strength (p < 0.00). The roughness values (Ra) were: NC (0.21 ± 0.19)(c); ConC (0.30 ± 0.08)(c); CutC (0.50 ± 0.22)(cd); CVD (0.74 ± 0.14)(bd); MGD (0.89 ± 0.39)(ab); Er50 (0.89 ± 0.14)(ab); AlO (0.90 ± 0.07)(ab); Nd60 (0.94 ± 0.33ab; SIL (0.98 ± 0.07)(ab); Nd120 (1.10 ± 0.19)(a); CGD (1.10 ± 0.32)(a); Er200 (1.12 ± 0.21)(a). The results of the tensile bond strength test in MPa were: CGD (11.58 ± 3.03)(a); MGD (12.66 ± 3.82)(ab); NC (13.51 ± 3.95(ab); Nd120 (14.11 ± 5.95)(ab); ConC (14.73 ± 6.12)(ab); Er200 (15.51 ± 1.45)(abc); CVD (15.61 ± 5.00(abc); Er50 (16.44 ± 2.75) (abc); CutC (16.79 ± 2.98)(abc); Nd60 (17.72 ± 2.45)(abcd); AlO (18.33 ± 3.19)(bcd); SIL (21.13 ± 4.48(cd); CoheC (23.50 ± 5.81)(d). The groups followed by the same letters were not statistically significantly different (Tukey's test). No correlation was found between bond strength and roughness (r = 0.007). Air abrasion with silica coating (Rocatec) was the only method which resulted in significantly higher bond strength in relation to the negative control group. The increase in laser energy produced a rougher surface, but reduced the bond strength.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Oxyde d′aluminium, activated, basic, Brockmann I
Sigma-Aldrich
Oxyde d′aluminium, activated, neutral, Brockmann I
Sigma-Aldrich
Oxyde d′aluminium, powder, 99.99% trace metals basis
Sigma-Aldrich
Oxyde d′aluminium, activated, acidic, Brockmann I
Sigma-Aldrich
Oxyde d′aluminium, powder, primarily α phase, ≤10 μm avg. part. size, 99.5% trace metals basis
Sigma-Aldrich
Oxyde d′aluminium, nanopowder, <50 nm particle size (TEM)
Sigma-Aldrich
Aluminum oxide, nanoparticles, <50 nm particle size (DLS), 20 wt. % in isopropanol
Sigma-Aldrich
Oxyde d′aluminium, pellets, 3 mm
Sigma-Aldrich
Oxyde d′aluminium, Corundum, α-phase, -100 mesh
Sigma-Aldrich
Oxyde d′aluminium, nanopowder, 13 nm primary particle size (TEM), 99.8% trace metals basis
Sigma-Aldrich
Oxyde d′aluminium, fused, powder, primarily α-phase, -325 mesh
Sigma-Aldrich
Oxyde d′aluminium, 99.997% trace metals basis
Sigma-Aldrich
Oxyde d′aluminium, pore size 58 Å, ~150 mesh
Sigma-Aldrich
Aluminum oxide, nanoparticles, 30-60 nm particle size (TEM), 20 wt. % in H2O
Sigma-Aldrich
Oxyde d′aluminium, Type WN-6, Neutral, Activity Grade Super I
Sigma-Aldrich
Oxyde d′aluminium, fused, powder, primarily α-phase, 100-200 mesh
Sigma-Aldrich
Oxyde d′aluminium, nanowires, diam. × L 2-6 nm × 200-400 nm
Sigma-Aldrich
Aluminum oxide, mesostructured, MSU-X (wormhole), average pore size 3.8 nm
Sigma-Aldrich
Oxyde d′aluminium, single crystal substrate, <0001>
Sigma-Aldrich
Oxyde d′aluminium, activated, neutral, Brockmann I, free-flowing, Redi-Dri
Sigma-Aldrich
Oxyde d′aluminium, activated, acidic, Brockmann I, free-flowing, Redi-Dri
Sigma-Aldrich
Yttrium aluminum oxide, nanopowder, <150 nm particle size (TEM), 99% trace metals basis