- Thermal oxidation of 9'-cis-neoxanthin in a model system containing peroxyacetic acid leads to the potent odorant beta-damascenone.
Thermal oxidation of 9'-cis-neoxanthin in a model system containing peroxyacetic acid leads to the potent odorant beta-damascenone.
The potent odorant beta-damascenone was formed directly from 9'-cis-neoxanthin in a model system by peroxyacetic acid oxidation and two-phase thermal degradation without the involvement of enzymatic activity. Beta-damascenone formation was heavily dependent on pH (optimum at 5.0) and temperature, occurring over the two sequential phases. The first was incubation with peroxyacetic acid at 60 degrees C for 90 min, and the second was at above 90 degrees C for 20 min. Only traces of beta-damascenone were formed on application of only one of the two phases. Formate and citrate solutions produced a much better environment for beta-damascenone formation than acetate and phosphate. About 7 microg/L beta-damascenone was formed from 5.8 mg/L 9'-cis-neoxanthin under optimal experimental condition. The detailed pathway by which beta-damascenone is formed remains to be elucidated.