Accéder au contenu
MilliporeSigma

Proteomic Analysis of Huntington's Disease Medium Spiny Neurons Identifies Alterations in Lipid Droplets.

Molecular & cellular proteomics : MCP (2023-03-24)
Kizito-Tshitoko Tshilenge, Carlos Galicia Aguirre, Joanna Bons, Akos A Gerencser, Nathan Basisty, Sicheng Song, Jacob Rose, Alejandro Lopez-Ramirez, Swati Naphade, Ashley Loureiro, Elena Battistoni, Mateus Milani, Cameron Wehrfritz, Anja Holtz, Claudio Hetz, Sean D Mooney, Birgit Schilling, Lisa M Ellerby
RÉSUMÉ

Huntington's disease (HD) is a neurodegenerative disease caused by a CAG repeat expansion in the Huntingtin (HTT) gene. The resulting polyglutamine (polyQ) tract alters the function of the HTT protein. Although HTT is expressed in different tissues, the medium-spiny projection neurons (MSNs) in the striatum are particularly vulnerable in HD. Thus, we sought to define the proteome of human HD patient-derived MSNs. We differentiated HD72-induced pluripotent stem cells and isogenic controls into MSNs and carried out quantitative proteomic analysis. Using data-dependent acquisitions with FAIMS for label-free quantification on the Orbitrap Lumos mass spectrometer, we identified 6323 proteins with at least two unique peptides. Of these, 901 proteins were altered significantly more in the HD72-MSNs than in isogenic controls. Functional enrichment analysis of upregulated proteins demonstrated extracellular matrix and DNA signaling (DNA replication pathway, double-strand break repair, G1/S transition) with the highest significance. Conversely, processes associated with the downregulated proteins included neurogenesis-axogenesis, the brain-derived neurotrophic factor-signaling pathway, Ephrin-A:EphA pathway, regulation of synaptic plasticity, triglyceride homeostasis cholesterol, plasmid lipoprotein particle immune response, interferon-γ signaling, immune system major histocompatibility complex, lipid metabolism, and cellular response to stimulus. Moreover, proteins involved in the formation and maintenance of axons, dendrites, and synapses (e.g., septin protein members) were dysregulated in HD72-MSNs. Importantly, lipid metabolism pathways were altered, and using quantitative image analysis, we found that lipid droplets accumulated in the HD72-MSN, suggesting a deficit in the turnover of lipids possibly through lipophagy. Our proteomics analysis of HD72-MSNs identified relevant pathways that are altered in MSNs and confirm current and new therapeutic targets for HD.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Roche
Cocktail d'inhibiteurs de protéases sans EDTA Mini cOmplete, Protease Inhibitor Cocktail Tablets provided in a glass vial, Tablets provided in a glass vial
Sigma-Aldrich
Anticorps anti-protéine associée aux microtubules 2 (MAP2), Chemicon®, from rabbit
Sigma-Aldrich
Anticorps anti-protéine huntingtine, a.a. 181-810, clone 1HU-4C8, ascites fluid, clone 1HU-4C8, Chemicon®
Sigma-Aldrich
Anti-HMGCR (internal) antibody produced in rabbit, ~1.0 mg/mL, affinity isolated antibody