Accéder au contenu
MilliporeSigma

Maternal Anti-Dengue IgG Fucosylation Predicts Susceptibility to Dengue Disease in Infants.

Cell reports (2020-05-14)
Natalie K Thulin, R Camille Brewer, Robert Sherwood, Stylianos Bournazos, Karlie G Edwards, Nitya S Ramadoss, Jeffery K Taubenberger, Matthew Memoli, Andrew J Gentles, Prasanna Jagannathan, Sheng Zhang, Daniel H Libraty, Taia T Wang
RÉSUMÉ

Infant mortality from dengue disease is a devastating global health burden that could be minimized with the ability to identify susceptibility for severe disease prior to infection. Although most primary infant dengue infections are asymptomatic, maternally derived anti-dengue immunoglobulin G (IgGs) present during infection can trigger progression to severe disease through antibody-dependent enhancement mechanisms. Importantly, specific characteristics of maternal IgGs that herald progression to severe infant dengue are unknown. Here, we define ≥10% afucosylation of maternal anti-dengue IgGs as a risk factor for susceptibility of infants to symptomatic dengue infections. Mechanistic experiments show that afucosylation of anti-dengue IgGs promotes FcγRIIIa signaling during infection, in turn enhancing dengue virus replication in FcγRIIIa+ monocytes. These studies identify a post-translational modification of anti-dengue IgGs that correlates with risk for symptomatic infant dengue infections and define a mechanism by which afucosylated antibodies and FcγRIIIa enhance dengue infections.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Solution de substrat 3,3′,5,5′-Tétraméthylbenzidine (TMB) pour ELISA, peroxidase substrate
Sigma-Aldrich
Solution de substrat (pNPP) de phosphatase alcaline à produit jaune pour ELISA, ready to use solution
Sigma-Aldrich
Fucosyltransferase Inhibitor, 2F-Peracetyl-Fucose, 2F-Peracetyl-Fucose is a cell-permeable fluorinated fucose derivative that acts as an inhibitor of fucosyltransferases following its uptake and metabolic transformation into a GDP-fucose mimetic.