Accéder au contenu
MilliporeSigma
  • Epidermal differentiation and loss of clonal growth potential of human limbal basal epithelial progenitor cells during intrastromal invasion.

Epidermal differentiation and loss of clonal growth potential of human limbal basal epithelial progenitor cells during intrastromal invasion.

Investigative ophthalmology & visual science (2011-04-30)
Ek Kia Tan, Hua He, Scheffer C G Tseng
RÉSUMÉ

Intrastromal invasion by limbal basal epithelial progenitor cells in explant cultures is associated with epithelial-mesenchymal transition. It remains unclear whether intrastromal invasion is contingent on culturing conditions and whether invaded cells retain their progenitor status and original lineage. Human limbal explants were cultured on various culture substrates, with or without air-lifting (AL), and subjected to hematoxylin and eosin staining and immunostaining to pan-cytokeratins, p63α, ΔNp63, Pax6, CK10, and CK12. Single cells obtained by trypsin/EDTA from dispase-isolated epithelial sheets from both the outgrowth and the surface epithelium, or by collagenase from the remaining stroma, were seeded on 3T3 feeder layers. Intrastromal invasion was verified in all seven explant cultures by positive pan-cytokeratin staining. Immunofluorescence staining revealed that invaded epithelial cells were positive for p63α and ΔNp63, with or without nuclear staining of Pax6. Double immunostaining to CK10 and CK12 revealed that squamous metaplasia induced by AL was noted on the surface epithelium but not in intrastromally invaded epithelial cells. On 3T3 feeder layers, both the outgrowth and the surface epithelium yielded significant numbers of holoclones and meroclones positive to ΔNp63 but negative to CK10 and CK12. In contrast, intrastromally invaded epithelial cells generated only paraclones negative to ΔNp63 and CK12 but positive to CK10 regardless of culturing conditions. Intrastromal invasion by limbal basal epithelial progenitor cells is universal in all explant culture conditions, explaining why there is a gradual decline of outgrowth potential. Alteration of the limbal stromal niche leads invaded epithelial cells to adopt an epidermal fate.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Eosin Y Solution, Alcoholic