Multifunctional materials for biological use have mostly been designed with composite or hybrid nanostructures in which two or more components are incorporated. The present work reports on a multifunctional biomaterial based on single-phased luminescent mesoporous lanthanide oxide nanoparticles that combine
The feasibility of the gadolinium-doped mesoporous silica nanocomposite Gd(2)O(3)@MCM-41 as a safe, effective MRI nanoprobe has been validated in the current investigation systematically from atomistic and molecular modeling to its synthesis and characterization on in vivo MR imaging and biocompatibility.
Bioimaging is an important diagnostic tool in the investigation and visualization of biological phenomena in cells and in medicine. In this context, up-converting Gd(2)O(3):Er(3+),Yb(3+) nanostructures (nanoparticles, nanorods) have been synthesized by precipitation methods and hydrothermal synthesis. Independent of size and
We have previously shown that gadolinium oxide (Gd(2)O(3)) nanoparticles are promising candidates to be used as contrast agents in magnetic resonance (MR) imaging applications. In this study, these nanoparticles were investigated in a cellular system, as possible probes for visualization
Here, we report the shape-controlled synthesis of tripodal and triangular gadolinium oxide (Gd2O3) nanoplates. In the presence of lithium ions, the shape of the nanocrystals is readily controlled by tailoring reaction parameters such as temperature and time. We observe that
Notre équipe de scientifiques dispose d'une expérience dans tous les secteurs de la recherche, notamment en sciences de la vie, science des matériaux, synthèse chimique, chromatographie, analyse et dans de nombreux autres domaines..