The H+/K+-ATPase is a gastric proton pump that is a member of the P-type cation-transporting adenosine 5′-triphosphatase (ATPase) family. H+/K+-ATPase consists of a large transmembrane, catalytic α subunit, that contains sites for ATP binding and phosphorylation. This ATPase also has a smaller glycoprotein (β) subunit which may play a role in maintaining the structural and functional integrity of the complex. Mouse monoclonal anti-H+/K+ ATPase (β subunit) binds to H+/K+-ATPase β subunit in cow, dog, pig, rabbit, mouse, ferret and rat tissues. By immunoblotting, the antibody detects various forms of the β subunit, including a 60-80kDa glycosylated protein, a 52kDa β subunit precursor and the 34kDa core peptide.
The antibody reacts with various forms of the H+/K+ ATPase β subunit. It binds an epitope within amino acids 1-13 or 15-28 located on the cytoplasmic side of the β subunit. The antibody has been shown to inhibit the enzymatic activity of the H+/K+-ATPase and to alter the affinity of the cytoplasmic K+ binding site. It may be used to localize and detect H+/K+ ATPase β subunit.
Applications in which this antibody has been used successfully, and the associated peer-reviewed papers, are given below. Western Blotting (1 paper)
Mouse monoclonal anti-H+/K+ ATPase (β subunit) antibody can be used for indirect immunofluorescence (1:2,000), chemiluminescent western blot (1:4,000), and immunohistochemical applications.
Physical form
Solution in phosphate buffered saline containing 0.05% sodium azide.
Disclaimer
Unless otherwise stated in our catalog or other company documentation accompanying the product(s), our products are intended for research use only and are not to be used for any other purpose, which includes but is not limited to, unauthorized commercial uses, in vitro diagnostic uses, ex vivo or in vivo therapeutic uses or any type of consumption or application to humans or animals.
The Journal of biological chemistry, 286(16), 14120-14128 (2011-03-04)
Kir4.1 channels were found to colocalize with the H(+)/K(+)-ATPase throughout the parietal cell (PC) acid secretory cycle. This study was undertaken to explore their functional role. Acid secretory rates, electrophysiological parameters, PC ultrastructure, and gene and protein expression were determined
Pancreatic duct cells are equipped with acid/base transporters important for exocrine secretion. Pancreatic ductal adenocarcinoma (PDAC) cells may utilize such transporters to acidify extracellular tumor microenvironment, creating a niche favoring cell proliferation, fibrosis and resistance to chemotherapy-all contributing to the
Frontiers in immunology, 14, 1139391-1139391 (2023-06-19)
MDSCs express SCHLAFEN 4 (SLFN4) in Helicobacter-infected stomachs coincident with spasmolytic polypeptide-expressing metaplasia (SPEM), a precursor of gastric cancer. We aimed to characterize SLFN4+ cell identity and the role of Slfn4 in these cells. Single-cell RNA sequencing was performed on
The mechanism by which pancreas secretes high HCO3- has not been fully resolved. This alkaline secretion, formed in pancreatic ducts, can be achieved by transporting HCO3- from serosa to mucosa or by moving H+ in the opposite direction. The aim
Questions
Reviews
★★★★★ No rating value
Active Filters
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.