GF52959785
Zinc
foil, 300x300mm, thickness 0.1mm, as rolled, 99.95+%
Synonym(s):
Zinc, ZN000250
Sign Into View Organizational & Contract Pricing
All Photos(2)
About This Item
Recommended Products
vapor pressure
1 mmHg ( 487 °C)
Assay
99.95%
form
foil
manufacturer/tradename
Goodfellow 529-597-85
resistivity
5.8 μΩ-cm, 20°C
size × thickness
300x300 mm × 0.1 mm
bp
907 °C (lit.)
mp
420 °C (lit.)
density
7.133 g/mL at 25 °C (lit.)
SMILES string
[Zn]
InChI
1S/Zn
InChI key
HCHKCACWOHOZIP-UHFFFAOYSA-N
General description
For updated SDS information please visit www.goodfellow.com.
Legal Information
Product of Goodfellow
Storage Class Code
13 - Non Combustible Solids
WGK
WGK 3
Flash Point(F)
Not applicable
Flash Point(C)
Not applicable
Certificates of Analysis (COA)
Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Journal of nanoscience and nanotechnology, 9(9), 5586-5591 (2009-11-26)
Nanowire arrays of zinc oxide were synthesized on zinc foil by a simple thermal evaporation process. Morphologies and sizes of the synthesized nanostructures were varied by varying the reaction time and the surface roughness of the substrate. Self-catalytic liquid-solid mechanism
Chemical communications (Cambridge, England), (33)(33), 3551-3553 (2006-08-22)
Large-scale, ultralong ZnO nanowire and nanobelt arrays with honeycomb-like micropatterns have been fabricated by hydrothermal oxidation of zinc foil in aqueous alkaline (NH4)2S2O8 solutions.
Chemical communications (Cambridge, England), (15)(15), 1655-1657 (2006-04-04)
Highly oriented ZnO nanoneedle/nanorods arrays have been fabricated by direct oxidation of zinc foil in alkaline zincate ion solution at near room temperature (20 degrees C for nanoneedles, 30 degrees C for nanorods).
Physical chemistry chemical physics : PCCP, 15(17), 6260-6267 (2013-03-23)
A simple method for the large-scale synthesis of gram quantities of compound semiconductor nanowires without the need for any external catalysts or templates is presented. This method is demonstrated using zinc phosphide (Zn3P2) and zinc antimonide (β-Zn4Sb3) nanowires as example
Journal of nanoscience and nanotechnology, 11(12), 10506-10510 (2012-03-14)
We have investigated the properties of Mn-doped ZnO nanocrystalline film growing on zinc foil by the hydrothermal method. X-ray photoelectron spectroscopy shows that the manganese ions exist as Mn2+ in the film. From UV-vis spectra, we observe a red shift
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service