Skip to Content
Merck
All Photos(3)

Key Documents

120871

Sigma-Aldrich

Terephthaloyl chloride

≥99%, flakes

Synonym(s):

Terephthalic acid chloride, Terephthaloyl dichloride

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
C6H4-1,4-(COCl)2
CAS Number:
Molecular Weight:
203.02
Beilstein:
607796
EC Number:
MDL number:
UNSPSC Code:
12352100
eCl@ss:
39050525
PubChem Substance ID:
NACRES:
NA.22

vapor density

7 (vs air)

vapor pressure

0.02 mmHg ( 25 °C)

Assay

≥99%

form

flakes

bp

266 °C (lit.)

mp

79-81 °C (lit.)

solubility

ethanol: soluble 100 mg/mL, clear, colorless

functional group

acyl chloride

SMILES string

ClC(=O)c1ccc(cc1)C(Cl)=O

InChI

1S/C8H4Cl2O2/c9-7(11)5-1-2-6(4-3-5)8(10)12/h1-4H

InChI key

LXEJRKJRKIFVNY-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

Terephthaloyl chloride is a highly reactive acid chloride derived from terephthalic acid. It is used as a cross-linking agent in polymer synthesis. Terephthaloyl chloride undergoes condensation reaction with difunctional α,ω-diaminopolystyrene to yield chain-extended polystyrene containing amide bonds along the polymer backbone. It undergoes interfacial reaction with bovine serum albumin to form thin cross-linked films.

Application

Terephthaloyl chloride was used in the synthesis of liquid crystalline thermosets by thermal cyclotrimerization of dicyanate compounds of ring substituted bis(4-hydroxyphenyl) terepthalates.

Legal Information

DuPont product

Pictograms

Skull and crossbonesCorrosion

Signal Word

Danger

Hazard Statements

Hazard Classifications

Acute Tox. 3 Inhalation - Eye Dam. 1 - Skin Corr. 1A - STOT SE 3

Target Organs

Respiratory system

Storage Class Code

6.1A - Combustible acute toxic Cat. 1 and 2 / very toxic hazardous materials

WGK

WGK 1

Flash Point(F)

356.0 °F - closed cup

Flash Point(C)

180 °C - closed cup

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

N V Larionova et al.
International journal of pharmaceutics, 189(2), 171-178 (1999-10-28)
The objective of this study is to demonstrate the feasibility of microcapsules containing a protein and a proteinase inhibitor in order to allow the oral administration of proteic or peptidic drug. Starch/bovine serum albumin mixed-walled microcapsules were prepared using interfacial
Zeynep Ekemen et al.
Biomacromolecules, 12(12), 4291-4300 (2011-11-03)
In this work, we utilize a recently developed microbubbling process to generate controlled protein (bovine serum albumin, BSA) coated bubbles and then manipulate these to fabricate a variety of structures suitable for several generic biomedical applications, tissue engineering, and biosensor
Rigid-rod thermosets based on 1, 3, 5-triazine-linked aromatic ester segments.
Barclay GG, et al.
Macromolecules, 25(11), 2947-2954 (1992)
M C Levy et al.
Journal of pharmaceutical sciences, 83(3), 419-422 (1994-03-01)
Microcapsules were prepared from human serum albumin (HSA) through interfacial cross-linking with terephthaloyl chloride (TC). Reaction times were increased from 2 to 60 min, while pH (9.8) and TC concentration (2.5% w/v) were kept constant. Fourier-transform infrared (FT-IR) spectra of
S Alexandridou et al.
Journal of microencapsulation, 18(6), 767-781 (2001-11-07)
Oil-containing polyterephthalamide microcapsules were synthesized by the interfacial polymerization of an oil-soluble monomer (terephthaloyl dichloride, TDC) and a mixture of two water-soluble monomers (diethylenetriamine, DETA, and 1, 6-hexamethylenediamine, HMDA). The influence of several synthesis parameters (e.g. concentration ratio of the

Articles

Atomic layer deposition meets various needs including semiconductor device miniaturization and nanoparticle coating.

Atomic layer deposition meets various needs including semiconductor device miniaturization and nanoparticle coating.

Atomic layer deposition meets various needs including semiconductor device miniaturization and nanoparticle coating.

Atomic layer deposition meets various needs including semiconductor device miniaturization and nanoparticle coating.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service