Skip to Content
Merck
All Photos(3)

Documents

325252

Sigma-Aldrich

Titanium diisopropoxide bis(acetylacetonate)

75 wt. % in isopropanol

Synonym(s):

Diisopropoxytitanium bis(acetylacetonate) solution, TYZOR® AA organic titanate, Ti(acac)2OiPr2

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
[(CH3)2CHO]2Ti(C5H7O2)2
CAS Number:
Molecular Weight:
364.26
MDL number:
UNSPSC Code:
12352103
PubChem Substance ID:
NACRES:
NA.23

form

solution

composition

Ti, 9-10.5% gravimetric

reaction suitability

core: titanium
reagent type: catalyst

concentration

75 wt. % in isopropanol

refractive index

n20/D 1.4935

density

0.995 g/mL at 25 °C

SMILES string

CC(C)O[Ti](OC(C)C)(O\C(C)=C\C(C)=O)O\C(C)=C\C(C)=O

InChI

1S/2C5H8O2.2C3H7O.Ti/c2*1-4(6)3-5(2)7;2*1-3(2)4;/h2*3,6H,1-2H3;2*3H,1-2H3;/q;;2*-1;+4/p-2/b2*4-3+;;;

InChI key

OVSGBKZKXUMMHS-VVDZMTNVSA-L

Looking for similar products? Visit Product Comparison Guide

Application

Titanium diisopropoxide bis (acetylacetonate) (TAA) may be used as a precursor to develop self assembled macroporous titania particles by evaporation. Commercial titanium(IV) bis(acetylacetonate) diisopropoxide was used to synthesize titanium acetylacetonate xerogels by drying, which could be further used to prepare titania films. TAA may be used as a hole blocking layer to fabricate solar cells.

Legal Information

TYZOR is a registered trademark of E. I. du Pont de Nemours and Company

Signal Word

Danger

Hazard Statements

Hazard Classifications

Eye Dam. 1 - Flam. Liq. 2 - STOT SE 3

Target Organs

Central nervous system

Storage Class Code

3 - Flammable liquids

WGK

WGK 3

Flash Point(F)

53.6 °F - closed cup

Flash Point(C)

12 °C - closed cup

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Michael Kulbak et al.
The journal of physical chemistry letters, 6(13), 2452-2456 (2015-08-13)
Hybrid organic-inorganic lead halide perovskite photovoltaic cells have already surpassed 20% conversion efficiency in the few years that they have been seriously studied. However, many fundamental questions still remain unanswered as to why they are so good. One of these
Fabrication of Porous Titania Particles from Water-in-Oil Emulsions for the Applications of Photocatalyst.
Cho YS, et al.
Journal of Dispersion Science and Technology, 37(5), 676-686 (2016)
Titanium (IV) acetylacetonate xerogels for processing titania films: A thermoanalytical study.
Acik I, et al.
Journal of Thermal Analysis and Calorimetry, 97(1), 39-45 (2009)
Monovalent Cation Doping of CH3NH3PbI3 for Efficient Perovskite Solar Cells.
Abdi-Jalebi M, et al.
Journal of Visualized Experiments, 121, e55307-e55307 (2017)
Jingqi Liu et al.
Scientific reports, 9(1), 1362-1362 (2019-02-06)
Previously, textile dye sensitised solar cells (DSSCs) woven using photovoltaic (PV) yarns have been demonstrated but there are challenges in their implementation arising from the mechanical forces in the weaving process, evaporation of the liquid electrolyte and partially shaded cells

Articles

Titanium dioxide applications: Semiconducting material characteristics and diverse functionalities.

Titanium dioxide applications: Semiconducting material characteristics and diverse functionalities.

Few Monolayer Atomic Layer Deposition (ALD) on Surfaces and Interfaces for Energy Applications

Titanium dioxide applications: Semiconducting material characteristics and diverse functionalities.

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service