All Photos(2)
About This Item
Empirical Formula (Hill Notation):
AgBr
CAS Number:
Molecular Weight:
187.77
EC Number:
MDL number:
UNSPSC Code:
12352302
PubChem Substance ID:
NACRES:
NA.55
Assay:
99%
form:
powder, crystals or chunks
Recommended Products
Quality Level
Assay
99%
form
powder, crystals or chunks
mp
432 °C (lit.)
density
6.473 g/mL at 25 °C (lit.)
SMILES string
Br[Ag]
InChI
1S/Ag.BrH/h;1H/q+1;/p-1
InChI key
ADZWSOLPGZMUMY-UHFFFAOYSA-M
Looking for similar products? Visit Product Comparison Guide
Signal Word
Warning
Hazard Statements
Precautionary Statements
Hazard Classifications
Aquatic Acute 1 - Aquatic Chronic 1
Storage Class Code
13 - Non Combustible Solids
WGK
WGK 3
Flash Point(F)
Not applicable
Flash Point(C)
Not applicable
Choose from one of the most recent versions:
Certificates of Analysis (COA)
Lot/Batch Number
Don't see the Right Version?
If you require a particular version, you can look up a specific certificate by the Lot or Batch number.
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Customers Also Viewed
Jing Jiang et al.
Chemistry (Weinheim an der Bergstrasse, Germany), 18(20), 6360-6369 (2012-04-21)
Noble metal nanoparticles (NPs) are often used as electron scavengers in conventional semiconductor photocatalysis to suppress electron-hole (e(-)-h(+) ) recombination and promote interfacial charge transfer, and thus enhance photocatalytic activity of semiconductors. In this contribution, it is demonstrated that noble
Yang Hou et al.
Environmental science & technology, 46(7), 4042-4050 (2012-03-06)
A ternary Ag/AgBr/TiO(2) nanotube array electrode with enhanced visible-light activity was synthesized by a two-step approach including electrochemical process of anodization and an in situ photoassisted deposition strategy. The dramatically enhanced photoelectrocatalytic activity of the composite electrode was evaluated via
Zhichao Wang et al.
Dalton transactions (Cambridge, England : 2003), 41(16), 4866-4870 (2012-03-08)
A plasmonic Ag/AgBr nanohybrid has been synthesized by in situ thermal reduction of AgBr nanoparticles in polyols. This directly converted Ag/AgBr shows significant absorption over the full visible spectrum. The enhanced light absorption in the spectral region of 450 nm
Hemant Joshi et al.
Dalton transactions (Cambridge, England : 2003), 42(7), 2366-2370 (2013-01-08)
The AgBr and Ag(2)Se nanoparticles (NPs) have been synthesized for the first time from two single source precursors ([Ag(2)(L)(2)Br(2)] (1) and [Ag(L-HBr)(2)]BF(4) (2) respectively) designed using the same ligand 3-benzyl-1-(2-phenylselanyl-ethyl)-3H-imidazolium bromide (L). The ODE-ODA-OA (1 : 1 : 2) and
Hua Wang et al.
Chemistry (Weinheim an der Bergstrasse, Germany), 18(15), 4620-4626 (2012-03-07)
Synthesis of inorganic single crystals with exposed high-reactivity facets is a desirable target in the catalytic chemistry field. Polyhedral AgBr microcrystals with an increased percentage of exposed high-reactivity {111} facets have been successfully prepared for the first time, and the
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service