Octyl-α-KG has been used to study its effects on the cell viability and to replenish α-KG levels in human glioblastoma cells.[1]
Biochem/physiol Actions
Membrane-permeant precursor of α-ketoglutarate that restores activity of α-KG-dependent dioxygenases in cancer cells.
Octyl-α-KG (Octyl-2KG) is a membrane-permeant precursor form of α-ketoglutarate (α-KG or 2KG) whose downregulation is often seen with concomitant upregulated D-2-hydroxyglutarate (D-2HG) in tumor cells due to mutations in the NADP+-dependent isocitrate dehydrogenase genes IDH1 and IDH2, leading to reduced activity of multiple α-KG-dependent dioxygenases. Cellular α-KG delivery by Octyl-α-KG treatment (1-5 mM) is shown to restore cellular demethylase activity following octyl-2-HG (1-50 mM) treatment or IDH1(R132H) mutant expression. Octyl-α-KG also effectively reactivates α-KG-dependent dioxygenases prolyl hydroxylase (PHD) activity in cells with a dysfunctional tricarboxylic acid (TCA) cycle due to succinate dehydrogenase (SDH) and/or fumarate hydratase (FH) deficiency.
Erythrocytosis is a common paraneoplastic syndrome associated with hepatocellular carcinoma. Although increased erythropoietin (EPO) is found in these patients, the clinical significance and molecular mechanisms underlying this observation are unclear. We demonstrate an inverse relationship between EPO production and overall
Science (New York, N.Y.), 324(5924), 261-265 (2009-04-11)
Heterozygous mutations in the gene encoding isocitrate dehydrogenase-1 (IDH1) occur in certain human brain tumors, but their mechanistic role in tumor development is unknown. We have shown that tumor-derived IDH1 mutations impair the enzyme's affinity for its substrate and dominantly
Molecular and cellular biology, 27(9), 3282-3289 (2007-02-28)
Succinate dehydrogenase (SDH) and fumarate hydratase (FH) are components of the tricarboxylic acid (TCA) cycle and tumor suppressors. Loss of SDH or FH induces pseudohypoxia, a major tumor-supporting event, which is the activation of hypoxia-inducible factor (HIF) under normoxia. In
Cancer cells gain a growth advantage through the so-called Warburg effect by shifting glucose metabolism from oxidative phosphorylation to aerobic glycolysis. Hypoxia-inducible factor 1 (HIF-1) has been suggested to function in metabolic reprogramming; however, the underlying mechanism has not been
2-Hydroxyglutarate (2HG) exists as two enantiomers, (R)-2HG and (S)-2HG, and both are implicated in tumor progression via their inhibitory effects on α-ketoglutarate (αKG)-dependent dioxygenases. The former is an oncometabolite that is induced by the neomorphic activity conferred by isocitrate dehydrogenase
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.