The discovery of a novel class of HCV NS5B polymerase inhibitors, 3-arylsulfonylamino-5-phenyl-thiophene-2-carboxylic acids is described. SAR studies have yielded several potent inhibitors of HCV polymerase as well as of HCV subgenomic RNA replication in Huh-7 cells.
Chemistry (Weinheim an der Bergstrasse, Germany), 17(42), 11838-11843 (2011-09-08)
Herein, we describe our attempts to systematically prepare a series of oligo(2-thienyl)-substituted pyridine derivatives. The crucial starting material, a β-alkoxy-β-ketoenamide, is easily available on a large scale by the reaction of lithiated methoxyallene with thiophene-2-carbonitrile and thiophene-2-carboxylic acid. This three-component
[figure: see text] A new methodology for the synthesis of substituted alkynes is described. In the presence of copper(I) thiophene-2-carboxylate (CuTC) or copper (I) 3-methylsalicylate (CuMeSal), the palladium-catalyzed cross-coupling of thioalkyne derivatives with boronic acids affords functionalized alkynes in yields
Journal of virology, 80(12), 6146-6154 (2006-05-30)
Multiple nonnucleoside inhibitor binding sites have been identified within the hepatitis C virus (HCV) polymerase, including in the palm and thumb domains. After a single treatment with a thumb site inhibitor (thiophene-2-carboxylic acid NNI-1), resistant HCV replicon variants emerged that
Journal of inorganic biochemistry, 101(4), 623-634 (2007-02-06)
Copper complexes with thiophen-2-yl saturated and alpha,beta-unsaturated carboxylic acids as ligands were prepared, characterized and pharmacochemically studied. The available evidence supports a dimeric structure for the complexes of the general formula [Cu2(L)4(MeOH)2] where L are the anions of thiophene 2-carboxylic
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.