Skip to Content
Merck
All Photos(1)

Key Documents

447250

Sigma-Aldrich

1,2-Bis(triethoxysilyl)ethane

96%

Synonym(s):

1,2-(Triethoxysilyl)ethane, 1,2-Bis(triethoxysilyl)ethane, 4,4,7,7-Tetraethoxy-3,8-dioxa-4,7-disiladecane, Ethylenebis(triethoxysilane)

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
[-CH2Si(OC2H5)3]2
CAS Number:
Molecular Weight:
354.59
EC Number:
MDL number:
UNSPSC Code:
12352103
PubChem Substance ID:
NACRES:
NA.23

Assay

96%

refractive index

n20/D 1.411 (lit.)

bp

119 °C (lit.)

density

0.958 g/mL at 25 °C (lit.)

SMILES string

CCO[Si](CC[Si](OCC)(OCC)OCC)(OCC)OCC

InChI

1S/C14H34O6Si2/c1-7-15-21(16-8-2,17-9-3)13-14-22(18-10-4,19-11-5)20-12-6/h7-14H2,1-6H3

InChI key

IZRJPHXTEXTLHY-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

1,2-Bis(triethoxysilyl)ethane (BTESE) is a silsesquioxane precursor which is mainly used in the preparation of mesoporous organic materials. It can tune silica networks which makes them useful in applications related to molecular separation.
1,2-bis(triethoxysilyl)ethane is a non-functional silane and a double trialkoxysilyl precursor.

Application

1,2-bis(triethoxysilyl)ethane may be used to prepare mesoporous organosilica materials. Amine functionalization of mesoporous silica can be undertaken by this silane. It may form inorganic hybrid membranes with poly(vinyl alcohol). Effect of this crosslinking silane on the bonding of bis-GMA (bis-phenol-A-diglycidyldimethacrylate) resin to silicatized titanium was investigated.
BTESE can be used as an anti-corrosive coating on aluminium magnesium alloy (Al93Mg7) for potential application in nuclear and food processing industries. BTESE membranes are chlorine resistant and can be thermally stable at 100°C. They which can be used in gas permeation (GS) and reverse osmosis (RO) applications. It may also form a mesoporous hybrid monolith with tetramethoxysilane by a sol-gel condensation method with enhanced chemical stability for peptide separation.

Pictograms

Skull and crossbonesHealth hazard

Signal Word

Danger

Hazard Statements

Hazard Classifications

Acute Tox. 3 Oral - Acute Tox. 4 Dermal - Aquatic Chronic 3 - STOT RE 1 Inhalation

Target Organs

nasopharynx,larynx

Storage Class Code

6.1C - Combustible acute toxic Cat.3 / toxic compounds or compounds which causing chronic effects

WGK

WGK 3

Flash Point(F)

235.4 °F - closed cup

Flash Point(C)

113 °C - closed cup

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

The effect of three silane coupling agents and their blends with a cross-linker silane on bonding a bis-GMA resin to silicatized titanium (a novel silane system)
Matinlinna JP, et al.
Journal of Dentistry, 34(10), 740-746 (2006)
Bridged amine-functionalized mesoporous organosilica materials from 1, 2-bis (triethoxysilyl) ethane and bis [(3-trimethoxysilyl) propyl] amine.
Wahab MA, et al.
Journal of Solid State Chemistry, 177, 3439-3447 (2004)
Organosilica bis (triethoxysilyl) ethane (BTESE) membranes for gas permeation (GS) and reverse osmosis (RO): The effect of preparation conditions on structure, and the correlation between gas and liquid permeation properties
Ibrahim SM, et al.
Journal of Membrane Science , 526(10), 242-251 (2017)
Z Varga et al.
Journal of thrombosis and haemostasis : JTH (2018-06-08)
Essentials Standardization of extracellular vesicle (EV) measurements by flow cytometry needs improvement. Hollow organosilica beads were prepared, characterized, and tested as reference particles. Light scattering properties of hollow beads resemble that of platelet-derived EVs. Hollow beads are ideal reference particles
Yuting Huang et al.
Journal of colloid and interface science, 583, 166-177 (2020-10-02)
Photodynamic therapy (PDT) is a minimally invasive treatment strategy that uses photosensitizers and light in combination with oxygen to generate cytotoxic singlet oxygen (1O2) to kill cancer cells by necrosis or apoptosis. However, the treatment effects are still not satisfactory

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service