Skip to Content
Merck
All Photos(1)

Key Documents

660485

Sigma-Aldrich

3,4-Propylenedioxythiophene

97%

Synonym(s):

3,4-Dihydro-2H-thieno[3,4-b][1,4]dioxepin, ProDOT

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C7H8O2S
CAS Number:
Molecular Weight:
156.20
MDL number:
UNSPSC Code:
12352103
PubChem Substance ID:
NACRES:
NA.23
form:
solid
Assay:
97%

Quality Level

Assay

97%

form

solid

mp

79-83 °C

SMILES string

C1COc2cscc2OC1

InChI

1S/C7H8O2S/c1-2-8-6-4-10-5-7(6)9-3-1/h4-5H,1-3H2

InChI key

WNOOCRQGKGWSJE-UHFFFAOYSA-N

General description

3,4-Propylenedioxythiophene (PRODOT) is a conductive polymer that forms a π-conjugated system. It has good electrochromic properties with high conductivity and surface electroactivity. It forms a thin film by using layer by layer (LBL) technique and spin coating.

Application

PRODOT can be used as a conjugated polymer in the fabrication of dye sensitized solar cells (DSSCs), sensors and electrochromic materials.

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

A high-performance counter electrode based on poly (3, 4-alkylenedioxythiophene) for dye-sensitized solar cells
Lee K, et al.
Journal of Power Sources, 188(1), 313-318 (2009)
Site-isolated electro-optic chromophores based on substituted 2, 2?-Bis (3, 4-propylenedioxythiophene) pi-conjugated bridges
Hammond SR, et al.
Chemistry of Materials, 20(10), 3425-3434 (2008)
Triphenylamine-based dyes bearing functionalized 3, 4-propylenedioxythiophene linkers with enhanced performance for dye-sensitized solar cells
Liang Y, et al.
Organic Letters, 12(6), 1204-1207 (2010)
Jae Joon Kim et al.
Science advances, 5(3), eaaw0463-eaaw0463 (2019-03-23)
We vapor print conformal conjugated polymer electrodes directly onto living plants and use these electrodes to probe the health of actively growing specimens using bioimpedance spectroscopy. Vapor-printed polymer electrodes, unlike their adhesive thin-film counterparts, do not delaminate from microtextured living
Rational design of an electrochromic polymer with high contrast in the visible region: dibenzyl substituted poly (3, 4-propylenedioxythiophene).
Krishnamoorthy K, et al.
Journal of Materials Chemistry, 11(12), 2909-2911 (2001)

Articles

Conjugated polymers offer charge transport between inorganic, electrically conducting metals and organic, proton-conducting biological systems.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service