Barium oxide, also known as barium(II) oxide, is a white or off-white fine powder with a melting point exceeding 1,800 °C. It is a highly stable compound with a high melting point and good chemical resistance, making it suitable for use in a wide range of applications. There are several methods to produce barium oxide including the thermal decomposition of barium carbonate and the electrolysis of barium chloride.
Application
Barium oxide is used in a variety of applications. It is used as a raw material in the production of ceramics, such as glazes and ceramic pigments. It is used as a refractory material in the production of furnace linings and high-temperature applications. It is used as a fluxing agent in the production of glass, helping to lower the melting point and improve the clarity of glass. It is used as a catalyst in the production of polyethylene and other polymers. It is often used as a starting material to produce other barium compounds or dope semiconductors.
Features and Benefits
Used in the synthesis of the high-κ material BST (barium strontium titanate). Used in the study of NOX storage.
Barium titanate is a ferroelectric perovskite with unique electric properties; therefore, it is widely applied in the fabrication of inorganic coatings or thin films, capacitors, or in the production of devices for energy storage and conversion. This paper describes the
The Journal of prosthetic dentistry, 109(2), 88-94 (2013-02-12)
It is unclear if fiber-reinforced fixed dental prostheses can be fabricated with physical properties that make them suitable for definitive prostheses. The purpose of this study was to compare the load bearing capacity of fiber-reinforced and unreinforced computer-aided design/computer-aided manufacturing
Physical chemistry chemical physics : PCCP, 7(8), 1839-1844 (2005-04-21)
We have modelled the surface diffusion and growth of BaO and SrO both in the homoepitaxial and heteroepitaxial (BaO on SrO and SrO on BaO) cases. The diffusion proceeds most favourably by an exchange mechanism involving the surface layer. When
The journal of physical chemistry. B, 109(1), 27-29 (2006-07-21)
Temperature programmed desorption, infrared spectroscopy, and (15)N solid state NMR spectroscopy were used to characterize the nature of the nitrate species formed on Al(2)O(3) and BaO/Al(2)O(3) NO(x) storage/reduction materials. Two distinctly different nitrate species were found: surface nitrates that are
Langmuir : the ACS journal of surfaces and colloids, 25(18), 10820-10828 (2009-07-11)
Reactions of NO2, H2O, and CO2 with a thick (>20 monolayer equivalent (MLE)) BaO film supported on Pt(111) were studied with temperature programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS). NO2 reacts with a thick BaO layer to form surface
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.