Skip to Content
Merck
All Photos(2)

Documents

921505

Sigma-Aldrich

Droplet generator chip - Multi channel design

Fluidic 440, PC

Synonym(s):

Microfluidic, Microparticle, Nanoparticle

Sign Into View Organizational & Contract Pricing


About This Item

UNSPSC Code:
42142600
NACRES:
NA.23

description

Microfludic chip x1

Looking for similar products? Visit Product Comparison Guide

Application

Microfluidic generation of droplets can produce highly monodispersed droplets with high frequency (up to hundreds of kHz). Interest in droplet-based microfluidic systems has grown substantially, because microfluidics offers the ability to handle very small volumes (μl to fl) of fluids, provides better mixing, encapsulation, sorting, and sensing. Microfluidics can be used for high throughput experimentation. Microfluidic-based droplets have many diverse and varied applications such as particle synthesis and chemical analysis. Highly controlled droplet production also makes single cell analysis, or drug testing possible.

Droplet generator chip - Multi channel design, Fluidic 440, PC is made of PC (polycarbonate) is suited to evaluate droplet generation with a single cross, flow focusing geometry. The nozzle sizes are 50, 60, 70 and 80 μm on this chip. With its two Mini Luer inlet and one Mini Luer outlet ports per droplet generation unit, the chip requires a two-channel microfluidic pump. There are 8 droplet generator units on this chip.

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Recent advances of controlled drug delivery using microfluidic platforms.
Li X, et al.
Advanced Drug Delivery Reviews, 128, 3-28 (2018)
Microfluidic-assisted fabrication of carriers for controlled drug delivery.
Santos H A, et al.
Lab on a chip, 17, 1856-1883 (2017)
Dongfei Liu et al.
Lab on a chip, 17(11), 1856-1883 (2017-05-10)
The microfluidic technique has brought unique opportunities toward the full control over the production processes for drug delivery carriers, owing to the miniaturisation of the fluidic environment. In comparison to the conventional batch methods, the microfluidic setup provides a range
Recent advances of controlled drug delivery usingmicrofluidic platforms.
Li X, et al.
Advanced Drug Delivery Reviews, 128, 3-28 (2018)
Sharma T Sanjay et al.
Advanced drug delivery reviews, 128, 3-28 (2017-09-19)
Conventional systematically-administered drugs distribute evenly throughout the body, get degraded and excreted rapidly while crossing many biological barriers, leaving minimum amounts of the drugs at pathological sites. Controlled drug delivery aims to deliver drugs to the target sites at desired

Articles

Microfluidic assembly improves polyamine nanoencapsulation of nucleic acids, overcoming challenges like polydispersity and poor reproducibility.

Microfluidic assembly improves polyamine nanoencapsulation of nucleic acids, overcoming challenges like polydispersity and poor reproducibility.

Microfluidic assembly improves polyamine nanoencapsulation of nucleic acids, overcoming challenges like polydispersity and poor reproducibility.

Microfluidic assembly improves polyamine nanoencapsulation of nucleic acids, overcoming challenges like polydispersity and poor reproducibility.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service