327034
Silver
wire, diam. 0.25 mm, ≥99.99% trace metals basis
Sign Into View Organizational & Contract Pricing
All Photos(1)
About This Item
Recommended Products
Quality Level
Assay
≥99.99% trace metals basis
form
wire
resistivity
1.59 μΩ-cm, 20°C
diam.
0.25 mm
bp
2212 °C (lit.)
mp
960 °C (lit.)
density
10.49 g/cm3 (lit.)
SMILES string
[Ag]
InChI
1S/Ag
InChI key
BQCADISMDOOEFD-UHFFFAOYSA-N
Application
The product was used to construct silver/silver chloride electrodes which was used in the preparation of a number of biofilms for:
- flavin microelectrode with a tip size of 10–30 μm, composed of a carbon working electrode with a S. oneidensis MR-1 biofilm.1
- fumarate and acetate microbiosensor; composed of carbon working electrode coated with G. sulfurreducens biofilms.
Quantity
- 5 m (approximately 2.6 g)
- 25 m (approximately 13 g)
Signal Word
Warning
Hazard Statements
Precautionary Statements
Hazard Classifications
Aquatic Acute 1 - Aquatic Chronic 1
Storage Class Code
13 - Non Combustible Solids
WGK
WGK 3
Flash Point(F)
Not applicable
Flash Point(C)
Not applicable
Personal Protective Equipment
dust mask type N95 (US), Eyeshields, Gloves
Certificates of Analysis (COA)
Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Customers Also Viewed
A Fumarate Microbiosensor for Use in Biofilms.
Journal of the Electrochemical Society, 164(3), H3058-H3064 (2017)
Microbiosensor for the detection of acetate in electrode-respiring biofilms.
Biosensors And Bioelectronics, 81, 517-523 (2016)
Journal of nanoscience and nanotechnology, 13(7), 4686-4693 (2013-08-02)
We report on the preparation and characterization of polyurethane (PU) nanofibers containing silver (Ag) nanoparticles were synthesized by using electrospinning. Two different approaches were adopted to incorporate the Ag nanoparticles in to PU nanofibers. In the first approach, a homogeneous
Journal of nanoscience and nanotechnology, 13(6), 3851-3854 (2013-07-19)
The present studies reveal that silver nanoparticles (AgNPs) can induce apoptosis and enhance radio-sensitivity on cancer cells. In this paper, we mainly investigated the effect of AgNPs on rat glioma C6 cells upon the combination treatment of hyperthermia treatment (HTT).
Journal of nanoscience and nanotechnology, 13(6), 3897-3900 (2013-07-19)
The objectives of this research were to study biogenic synthesis of Ag(0) nanoparticles and to determine the effects of various experimental conditions such as silver nitrate concentrations, pHs and temperatures controlling for the optimal biosynthesis of Ag(0) nanoparticles. The metal-reducing
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service