Skip to Content
Merck
All Photos(1)

Key Documents

934437

Sigma-Aldrich

TissueFab® bioink 

(GelHep)MA Vis/ 405nm, low endotoxin

Synonym(s):

3D Bioprinting, Bioink, Controlled Release, GelMA, Gelatin, Gelatin Methacryloyl, HAMA, Heparin, Heparin Methacrylate, Hydrogel

Sign Into View Organizational & Contract Pricing


About This Item

UNSPSC Code:
12352201
NACRES:
NA.28

size

10 mL

Quality Level

description

Application: 3D bioprinting
Sterility: 0.2 μm filtered

form

viscous liquid (to gel)

impurities

<5 CFU/g Bioburden (Fungal)
<5 CFU/g Bioburden (total aerobic)
<50 EU/mL Endotoxin

color

pale yellow to colorless

storage temp.

2-8°C

Looking for similar products? Visit Product Comparison Guide

General description

TissueFab® bioink -(GelHep)MA Vis/405 nm, low endotoxin formulation can be used to bioprint cell-laden hydrogels in the desired shape without any supporting material. This bioink can be crosslinked in one step using exposure to 405 nm light for further culture and maturation of cells for tissue engineering and regenerative medicine applications.

About the material:

Heparin is a naturally occurring linear biopolymer and highly sulfated glycosaminoglycan (GAG). Research has demonstrated that heparin can modulate binding extracellular matrix proteins and sequester growth factors and cytokines, making them useful in 3D applications. The methacrylate-functionalization of heparin allows thermal or photochemical crosslinking via covalent conjugation. Heparins exhibit high anionic charge densities to promote large swelling ratios in water. Heparin-based bioinks are used in tissue engineering, 3D bio-printing, and drug delivery applications.

Gelatin methacryloyl (GelMA) is a polymerizable hydrogel material derived from natural extracellular matrix (ECM) components. Due to its low cost, abundance, and retention of natural cell binding motifs, gelatin has become a highly sought material for tissue engineering applications. The addition of photocrosslinkable methacrylamide functional groups in GelMA allows the synthesis of biocompatible, biodegradable, and non-immunogenic hydrogels that are stable in biologically relevant conditions and promote cell adhesion, spreading, and proliferation.

Low Endotoxin, low bioburden: Endotoxins can negatively impact cellular growth, morphology, differentiation, inflammation, and protein expression. The bioburden is the number of contaminated organisms found in a given amount of material.

We test each lot for endotoxins in addition to total bioburden (aerobic and fungal) to minimize unwanted interactions. For more information:
Cell Culture FAQs: Bacterial Endotoxin Contamination

Application

Currently, there is a need for high-quality, commercially available ready-to-use bioink formulations to enable the reproducible fabrication of synthetic tissues and organs by 3D Bioprinting
  • drug discovery
  • in-vitro disease models
  • regenerative medicine
  • cell-cultured meat

Features and Benefits

  • Bioprinting models replicate biology for drug discovery and in vivo applications
  • Sterile, low endotoxin
  • Batch control offers reproducible models for preclinical toxicology testing and drug screening
  • Extended shelf-life & stability

Other Notes

Rethink your Bioinks with TissueFab
  • Ready-to-use formulations eliminate the lengthy bioink formulation development process
  • Provide an optimized microenvironment conducive to the growth, proliferation, and maturation of cells
  • Validated with widely used cell types (including hMSCs) used in 3D Bioprinting
  • Step-by-step protocols developed and tested by internal R&D 3D Bioprinting Scientists
  • Compatible with different extrusion-based 3D bioprinter models

Legal Information

TISSUEFAB is a registered trademark of Merck KGaA, Darmstadt, Germany

Storage Class Code

12 - Non Combustible Liquids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Sorry, we don't have COAs for this product available online at this time.

If you need assistance, please contact Customer Support.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Cailing Zhao et al.
Biomacromolecules, 22(6), 2729-2739 (2021-06-01)
Extrusion-based bioprinting is an emerging and most frequently used technique for the fabrication of cell-laden constructs. A suitable hydrogel-based bioink for cell encapsulation and protection is critical for printability, structural stability, and post-printing cell viability. The thiol-ene chemistry-based gelatin-norbornene (GelNB)
Jingming Chen et al.
Biomedical materials (Bristol, England), 15(4), 045006-045006 (2019-08-31)
The ideal combination of hydrogel components for regeneration of cartilage and cartilaginous interfaces is a significant challenge because control over differentiation into multiple lineages is necessary. Stabilization of the phenotype of stem cell derived chondrocytes is needed to avoid undesired
Liliang Ouyang et al.
Science advances, 6(38) (2020-09-20)
A major challenge in three-dimensional (3D) bioprinting is the limited number of bioinks that fulfill the physicochemical requirements of printing while also providing a desirable environment for encapsulated cells. Here, we address this limitation by temporarily stabilizing bioinks with a
Danielle S W Benoit et al.
Biomaterials, 28(1), 66-77 (2006-09-12)
Poly(ethylene glycol) (PEG) hydrogels functionalized with heparin were utilized as a three-dimensional culture system for human mesenchymal stem cells (hMSCs). Heparin-functionalized hydrogels supported hMSC viability, as quantified through live/dead imaging, and induced osteogenic differentiation, as measured by increased alkaline phosphatase
Oju Jeon et al.
Journal of controlled release : official journal of the Controlled Release Society, 154(3), 258-266 (2011-07-13)
Photocrosslinkable biomaterials are promising for tissue engineering applications due to their capacity to be injected and form hydrogels in situ in a minimally invasive manner. Our group recently reported on the development of photocrosslinked alginate hydrogels with controlled biodegradation rates

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service