SML2988
Tat-NR2B9c trifluoroacetate
≥95% (HPLC)
Synonym(s):
NA-1, trifluoroacetate salt, Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Lys-Leu-Ser-Ser-Ile-Glu-Ser-Asp-Val, trifluoroacetate salt, YGRKKRRQRRR-KLSSIESDV, trifluoroacetate salt
Sign Into View Organizational & Contract Pricing
All Photos(1)
About This Item
Recommended Products
Biochem/physiol Actions
Tat-NR2B9c (NA-1) is a 20-mer peptide composed of a membrane-permeant HIV-1 Tat protein transduction domain sequence (a.a. 47-57) N-terminal to the NMDA receptor (NMDAR) GluN2B carboxyl tail sequence KLSSIESDV that blocks intracellular NMDAR-PSD-95 interaction-induced neurotoxic signaling without affecting NMDAR-mediated synaptic activity or calcium influx. NA-1 protects cultured cortical neurons from NMDA excitotoxicity (50 nM; 20/40/100 μM NMDA) and reduces focal ischemic brain damage in rats in vivo (3 μmol/kg iv. bolus 1 hr post MCAO onset).
Storage Class Code
11 - Combustible Solids
WGK
WGK 3
Flash Point(F)
Not applicable
Flash Point(C)
Not applicable
Choose from one of the most recent versions:
Certificates of Analysis (COA)
Sorry, we don't have COAs for this product available online at this time.
If you need assistance, please contact Customer Support.
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism, 33(12), 1937-1943 (2013-09-12)
Since the most significant ischemic sequelae occur within hours of stroke, it is necessary to understand how neuronal function changes during this time. While histologic and behavioral models show the extent of stroke-related damage, only in vivo recordings can illustrate
Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism, 35(5), 739-742 (2015-02-12)
The Tat-NR2B9c peptide has shown clinical efficacy as a neuroprotective agent in acute stroke. Tat-NR2B9c is designed to prevent nitric oxide (NO) production by preventing postsynaptic density protein 95 (PSD-95) binding to N-methyl-D-aspartate (NMDA) receptors and neuronal nitric oxide synthase;
Anesthesia and analgesia, 118(6), 1345-1354 (2014-05-21)
N-methyl-D-aspartate receptor (NMDARs)-dependent central sensitization plays an important role in cancer pain. Binding of NMDAR subunit 2B (NR2B) by postsynaptic density protein-95 (PSD-95) can couple NMDAR activity to intracellular enzymes, such as neuronal nitric oxide synthase (nNOS), facilitate downstream signaling
Journal of neuroscience research, 97(11), 1378-1392 (2019-05-16)
Antiepileptogenic agents that prevent the development of epilepsy following a brain insult remain the holy grail of epilepsy therapeutics. We have employed a label-free proteomic approach that allows quantification of large numbers of brain-expressed proteins in a single analysis in
Journal of molecular neuroscience : MN, 61(2), 235-246 (2016-11-21)
We have previously reported that cationic poly-arginine and arginine-rich cell-penetrating peptides display high-level neuroprotection and reduce calcium influx following in vitro excitotoxicity, as well as reduce brain injury in animal stroke models. Using the neuroprotective peptides poly-arginine R12 (R12) and
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service