Skip to Content
Merck
All Photos(1)

Key Documents

900889

Sigma-Aldrich

Lithium phenyl-2,4,6-trimethylbenzoylphosphinate

≥95%

Synonym(s):

LAP

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C16H16LiO3P
CAS Number:
Molecular Weight:
294.21
UNSPSC Code:
12352128
NACRES:
NA.23

Quality Level

Assay

≥95%

form

crystalline powder

color

white to off-white

storage temp.

2-8°C

SMILES string

CC1=C(C(P(C2=CC=CC=C2)(O[Li])=O)=O)C(C)=CC(C)=C1

Looking for similar products? Visit Product Comparison Guide

Application

Lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) is a water soluble, cytocompatible, Type I photoinitiator for use in the polymerization of hydrogels or other polymeric materials. This photoinitator is preferred over Irgacure 2959 for biological applications due to its increased water solubility, increased polymerization rates with 365 nm light, and absorbance at 400 nm allowing for polymerization with visible light. The improved polymerization kinetics enable cell encapsualation at reduced initiator concentration and longer wavelength light, which has been shown to reduce initiator toxicity and increase cell viability.

Features and Benefits

  • Superior water solubility
  • Biocompatible
  • Sensitiveto visible light

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Benjamin D Fairbanks et al.
Macromolecules, 44(8), 2444-2450 (2011-04-23)
Various techniques have been adopted to impart a biological responsiveness to synthetic hydrogels for the delivery of therapeutic agents as well as the study and manipulation of biological processes and tissue development. Such techniques and materials include polyelectrolyte gels that
Benjamin D Fairbanks et al.
Biomaterials, 30(35), 6702-6707 (2009-09-29)
Due to mild reaction conditions and temporal and spatial control over material formation, photopolymerization has become a valuable technique for the encapsulation of living cells in three dimensional, hydrated, biomimetic materials. For such applications, 2-hydroxy-1-[4-(2-hydroxyethoxy) phenyl]-2-methyl-1-propanone (I2959) is the most
Zachary M Geisterfer et al.
STAR protocols, 1(3), 100221-100221 (2020-12-31)
Cell-free extract derived from the eggs of the African clawed frog Xenopus laevis is a well-established model system that has been used historically in bulk aliquots. Here, we describe a microfluidic approach for isolating discrete, biologically relevant volumes of cell-free
Kavin Kowsari et al.
iScience, 24(11), 103372-103372 (2021-11-27)
To address current unmet needs in terms of scalability and material biocompatibility for future photocrosslinking-based additive manufacturing technologies, emergent platform designs are in inexorable demand. In particular, a shift from the present use of cell-damaging UV light sources in light-based
Zhiguang Qiao et al.
Biomaterials, 266, 120385-120385 (2020-10-30)
Despite significant advances in osteochondral tissue engineering, it remains challenging to successfully reconstruct native-like complex tissues organized in three-dimension with spatially varying compositional, structural and functional properties. In this contribution, inspired by the gradients in extracellular matrix (ECM) composition and

Articles

Water-dispersible photoinitiator nanoparticles enable novel formulations for 3D bioprinting, tissue engineering, and device manufacturing.

Water-dispersible photoinitiator nanoparticles enable novel formulations for 3D bioprinting, tissue engineering, and device manufacturing.

Water-dispersible photoinitiator nanoparticles enable novel formulations for 3D bioprinting, tissue engineering, and device manufacturing.

Water-dispersible photoinitiator nanoparticles enable novel formulations for 3D bioprinting, tissue engineering, and device manufacturing.

Related Content

Tissue engineering fabricates tissues cultures from scaffolds, living cells, and biologically active molecules by simulating the microenvironment of the body to repair or replace damaged tissue.

Tissue engineering fabricates tissues cultures from scaffolds, living cells, and biologically active molecules by simulating the microenvironment of the body to repair or replace damaged tissue.

Tissue engineering fabricates tissues cultures from scaffolds, living cells, and biologically active molecules by simulating the microenvironment of the body to repair or replace damaged tissue.

Tissue engineering fabricates tissues cultures from scaffolds, living cells, and biologically active molecules by simulating the microenvironment of the body to repair or replace damaged tissue.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service