Skip to Content
Merck
All Photos(2)

Key Documents

774111

Sigma-Aldrich

Copper

nanopowder, 40-60 nm particle size (SAXS), ≥99.5% trace metals basis

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
Cu
CAS Number:
Molecular Weight:
63.55
EC Number:
MDL number:
UNSPSC Code:
12352302
PubChem Substance ID:
NACRES:
NA.23

Quality Level

Assay

≥99.5% trace metals basis

form

nanopowder

resistivity

1.673 μΩ-cm, 20°C

particle size

40-60 nm (SAXS)

bp

2567 °C (lit.)

mp

1083.4 °C (lit.)

density

8.94 g/mL at 25 °C (lit.)

application(s)

battery manufacturing

SMILES string

[Cu]

InChI

1S/Cu

InChI key

RYGMFSIKBFXOCR-UHFFFAOYSA-N

Application

Copper nanopowder, 40-60 nm particle size (SAXS) can be used for a variety of applications such as printed electronics, electroless copper plating, heat transfer fluids, catalysis, and thermal energy storage.

Preparation Note

Partially Passivated: < 10% oxygen added by weight

Pictograms

FlameEnvironment

Signal Word

Danger

Hazard Statements

Hazard Classifications

Aquatic Acute 1 - Aquatic Chronic 1 - Flam. Sol. 2 - Self-heat. 1

Storage Class Code

4.2 - Pyrophoric and self-heating hazardous materials

WGK

WGK 2

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Customers Also Viewed

Slide 1 of 3

1 of 3

Ultrasound assisted dispersal of a copper nanopowder for electroless copper activation
Graves JE, et al.
Ultrasonics Sonochemistry, 29, 428-438 (2016)
Low-cost and high-throughput synthesis of copper nanopowder for nanofluid applications
Maji NC, et al.
Chemical Engineering Journal, 353, 34-45 (2018)
Evaluation of copper nanoparticles-Paraffin wax compositions for solar thermal energy storage
Lin SC and Al-Kayiem HH
Solar Energy, 132, 267-278 (2016)
Copper nanoparticles for printed electronics: routes towards achieving oxidation stability
Magdassi S, et al.
Materials, 3(9), 4626-4638 (2010)
Vizcaino; A.J.; et al.
International Journal of Hydrogen Energy, 32, 1450-1461 (2007)

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service