Skip to Content
Merck
  • Emulsion polymerization of vinyl acetate: safe optimization of a hazardous complex process.

Emulsion polymerization of vinyl acetate: safe optimization of a hazardous complex process.

Journal of hazardous materials (2011-06-03)
S Copelli, M Derudi, J Sempere, E Serra, A Lunghi, C Pasturenzi, R Rota
ABSTRACT

Fast and exothermic discontinuous emulsion polymerization processes are particularly difficult to optimize from both safety and productivity point of view because of the occurrence of side undesired reactions (e.g. chain transfer to monomer, backbiting, propagation of tertiary radicals, termination by disproportion, etc.) and the hazards of boiling phenomena and stable foam formation under atmospheric pressure. Moreover, the relevant number of loading, heating and cooling steps, required before starting the monomer addition (that is, the desired reaction), makes a strict product quality reproducibility very difficult to obtain. Under these operating conditions, it is necessary to employ a suitable combined theoretical and experimental procedure able to detect the optimum process dosing time at both the laboratory and the industrial scale. In this work, it is shown how to use the topological criterion theory together with proper adiabatic calorimeter and RC1 experimental data to safely optimize the synthesis of polyvinyl acetate through the radical emulsion polymerization of vinyl acetate by the means of an indirectly cooled isoperibolic semibatch reactor.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Vinyl acetate, CP
Supelco
Vinyl acetate, analytical standard
Sigma-Aldrich
Vinyl acetate, contains 3-20 ppm hydroquinone as inhibitor, ≥99%
Vinyl acetate, European Pharmacopoeia (EP) Reference Standard
Supelco
Vinyl acetate solution, certified reference material, 5000 μg/mL in acetonitrile