Skip to Content
Merck
All Photos(1)

Documents

N10970

Anthraquinone

analytical standard

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C14H8O2
CAS Number:
Molecular Weight:
208.21
Beilstein:
390030
EC Number:
MDL number:
UNSPSC Code:
41116107
PubChem Substance ID:

grade

analytical standard

vapor density

7.16 (vs air)

vapor pressure

1 mmHg ( 190 °C)

packaging

ampule of 1 g

manufacturer/tradename

Chem Service, Inc. PS-926

technique(s)

HPLC: suitable
gas chromatography (GC): suitable

bp

379-381 °C (lit.)

mp

284-286 °C (lit.)

format

neat

SMILES string

O=C1c2ccccc2C(=O)c3ccccc13

InChI

1S/C14H8O2/c15-13-9-5-1-2-6-10(9)14(16)12-8-4-3-7-11(12)13/h1-8H

InChI key

RZVHIXYEVGDQDX-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Application

Refer to the product′s Certificate of Analysis for more information on a suitable instrument technique. Contact Technical Service for further support.

Pictograms

Health hazardExclamation mark

Signal Word

Danger

Hazard Statements

Hazard Classifications

Carc. 1B - Skin Sens. 1

Storage Class Code

6.1C - Combustible acute toxic Cat.3 / toxic compounds or compounds which causing chronic effects

WGK

WGK 1

Flash Point(F)

482.0 °F - closed cup

Flash Point(C)

250 °C - closed cup


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Sorry, we don't have COAs for this product available online at this time.

If you need assistance, please contact Customer Support.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

C Ma et al.
Journal of applied microbiology, 112(5), 883-891 (2012-03-06)
To isolate an alkaliphilic bacterium and to investigate its ability of extracellular reduction. An alkaliphilic and halotolerant humus-reducing anaerobe, Bacillus pseudofirmus MC02, was successfully isolated from a pH 10·0 microbial fuel cell. To examine its ability of extracellular reduction, AQDS
Rakesh Kumar et al.
Molecular diversity, 15(3), 687-695 (2010-11-30)
H(2)O(2) mediated oxidation of alcohols in ionic liquid is revisited, wherein, ionic liquids under the influence of microwave irradiation have been found to facilitate activation of H(2)O(2) without any metal catalyst in aqueous condition. The method utilizes a neutral ionic
Hai-Yu Hu et al.
Organic letters, 10(21), 5035-5038 (2008-10-11)
The first selective catalytic hydrogenation induced by the artificial helix based on oligo(phenanthroline dicarboxamide)s containing a 9,10-anthraquinone subunit is described. Due to the steric hindrance within the helically folded oligomers, the selective reductions of the anthraquinone units were completely different
Seyed Hadi Ebrahimia et al.
Archives of animal nutrition, 65(4), 267-277 (2011-09-06)
The objective of the present study was to investigate the hypothesis that 9,10-anthraquinone (AQ) in combination with fumaric acid (FMA) may provide complementary effects to inhibit methanogens and enhance rumen's capacity for better utilisation of FMA towards propionate production. Three
Witold Nowik et al.
Journal of chromatography. A, 1218(23), 3636-3647 (2011-05-03)
A series of reversed phases bonded with several functional groups was investigated for separation of anthraquinone derivatives, following the previous work, dedicated to the selectivity of octadecyl silica bonded phases. Considering wide diversity of substitutions in hydrophobic anthraquinone skeleton, interactions

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service