This work describes the reaction mechanism for chemical modification of tyrosinase by Woodward's Reagent K and its covalent attachment to a glassy carbon electrode. The spectrophotometric studies revealed that the modification does not cause a significant structural change to tyrosinase.
Human liver arginase (EC 3.5.3.1) was totally inactivated by incubation with Woodward's reagent K (WRK). The inactivation followed pseudo-first-order kinetics, and the order of the inactivation was close to 1, consistent with reaction of one molecule of WRK with one
The transport inhibiting nucleotide binding to the uncoupling protein (UCP) has a unique pH dependence and has been postulated to be controlled by the dissociation state of a carboxyl group in UCP with pK 4.5 and, in addition only for
Protein science : a publication of the Protein Society, 17(4), 725-735 (2008-03-25)
Renilla luciferase (RLUC) is a versatile tool for gene expression assays and in vivo biosensor applications, but its catalytic mechanism remains to be elucidated. RLUC is evolutionarily related to the alpha/beta hydrolase family. Its closest known homologs are bacterial dehalogenases
The Biochemical journal, 328 ( Pt 3), 855-861 (1998-02-07)
The organ common-type (CT) isoenzyme of acylphosphatase is inactivated by Woodward's reagent K (WRK) (N-ethyl-5-phenylisoxazolium-3'-sulphonate) at pH6.0. The inactivation reaction follows apparent pseudo first-order kinetics. The dependence of the reciprocal of the pseudo first-order kinetic constant (kobs) on the reciprocal
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.