This chiral Rh(II) dimer was developed in the Davies lab to perform asymmetric carbene and nitrene reactions (C-H insertion, cyclopropanation, aziridination, C-H amination) with high regio- and stereocontrol.
Chemical communications (Cambridge, England), (10), 1238-1240 (2008-03-01)
Nitrile-substituted cyclopropanes are readily synthesized in a stereocontrolled fashion from the intermolecular cyclopropanation between 2-diazo-2-phenylacetonitrile and electron-rich olefins, catalyzed by the chiral dirhodium complex, Rh(2)(S-PTAD)(4).
The reaction of a variety of alpha-aryl-alpha-diazo ketones with activated olefins, catalyzed by the adamantyl glycine-derived dirhodium complex Rh(2)(S-PTAD)(4), generates cyclopropyl ketones with high diastereoselectivity (up to >95:5 dr) and enantioselectivity (up to 98% ee). Intermolecular C-H functionalization of 1,4-cyclohexadiene
Journal of the American Chemical Society (2016-10-05)
A mechanism study to identify the elements that control the chemoselectivity of metal-catalyzed N-atom transfer reactions of styryl azides is presented. Our studies show that the proclivity of the metal N-aryl nitrene to participate in sp3-C-H bond amination or electrocyclization
Chemical communications (Cambridge, England), 53(30), 4219-4221 (2017-03-31)
Acyclic methylene acetals bearing two diazoester subunits have been converted to [5,5]-spiroacetals via bidirectional C-H insertion under Rh(ii) catalysis. Using a chiral Rh(ii) catalyst, the major diastereomer can be produced in high enantiomeric excess (89%).
The laboratory synthesis of complex organic molecules relies heavily on the introduction and manipulation of functional groups, such as carbon-oxygen or carbon-halogen bonds; carbon-hydrogen bonds are far less reactive and harder to functionalize selectively. The idea of C-H functionalization, in
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.