Skip to Content
Merck
All Photos(3)

Documents

901450

Sigma-Aldrich

Guanidinium iodide

greener alternative

≥99%, anhydrous

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
CH6IN3
CAS Number:
Molecular Weight:
186.98
UNSPSC Code:
12352302
NACRES:
NA.23

grade

anhydrous

Quality Level

Assay

≥99%

form

powder

greener alternative product characteristics

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

sustainability

Greener Alternative Product

greener alternative category

SMILES string

[nH2+]c([nH])[nH].[I-]

Looking for similar products? Visit Product Comparison Guide

General description

We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product has been enhanced for energy efficiency. Click here for more details.

Application

  • Extremely hygroscopic.
  • Handle in glove box.
  • Handle and store under nitrogen atmosphere
Guanidinium iodide (GI), a guanidinium compound, exhibits good piezoelectric and pyroelectric properties. It can be used in the fabrication of dye-sensitized solar cells (DSSCs).
Guanidinium iodide anhydrous can be utilized as an ion migration inhibitor or as a dopant in polymer electrolytes for electronic devices. It can be employed as an additive in perovskite solar cells to modify the properties of perovskite layers. It may help in reducing defects, improving the crystallinity, and enhancing the absorption characteristics of the perovskite layer, ultimately leading to improved device performance.
Organohalide based perovskites have emerged as an important class of material for solar cell applications. Our perovskites precursors with extremely low water contents are useful for synthesizing mixed cation or anion perovskites needed for the optimization of the band gap, carrier diffusion length and power conversion efficiency of perovskites based solar cells.

Pictograms

Exclamation mark

Signal Word

Warning

Hazard Statements

Hazard Classifications

Acute Tox. 4 Oral - Eye Irrit. 2 - Skin Irrit. 2 - STOT SE 3

Target Organs

Respiratory system

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Novel room temperature ionic liquids of hexaalkyl substituted guanidinium salts for dye-sensitized solar cells
Wang P, et al.
Applied Physics. A, Materials Science & Processing, 79(1), 73-77 (2004)
Origin of spontaneous polarization and reconstructive phase transition in guanidinium iodide
Szafranski M and Jarek M
CrystEngComm, 15(23), 4617-4623 (2013)
Recent Advances in Hybrid Halide Perovskites-based Solar Cells.
Kalyanasundaram K, et al.
Material Matters , 11, 3-3 (2016)
Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells.
Yi C, et al.
Energy & Environmental Science, 9, 656-656 (2016)
Photovoltaic mixed-cation lead mixed-halide perovskites: links between crystallinity, photo-stability and electronic properties.
Rehman W, et al.
Energy & Environmental Science, 10, 361-361 (2017)

Articles

Next generation solar cells have the potential to achieve conversion efficiencies beyond the Shockley-Queisser (S-Q) limit while also significantly lowering production costs.

Dr. Perini and Professor Correa-Baena discuss the latest research and effort to obtain higher performance and stability of perovskite materials.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service