Naloxone benzoylhydrazone (NalBzoH) is a ligand used to study opioid receptors. It has been suggested to act at a novel kappa3 receptor but also appears to bind to classical opioid receptors, and possibly the ORL1 receptor. We have used opioid
Journal of cellular physiology, 235(4), 3497-3507 (2019-09-26)
Cell therapy combined with biomaterial scaffolds is used to treat cartilage defects. We hypothesized that chondrogenic differentiation bone marrow-derived mesenchymal stem cells (BM-MSCs) in three-dimensional biomaterial scaffolds would initiate cartilaginous matrix deposition and prepare the construct for cartilage regeneration in
J-113397 (1-[(3R,4R)-1-cyclooctylmethyl-3-hydroxymethyl-4-piperidyl]-3-ethyl-1,3-dihydro-2H-benzimidazol-2-one) is a recently developed antagonist of the opioid receptor-like 1 (ORL1) receptor. We compared the in vitro functional profile J-113397 on [35S]guanosine 5'-O-(gamma-thio)triphosphate (GTPgammaS) binding to mouse brain with that of [Phe1psi(CH2-NH)Gly2]nociceptin(1-13)NH2 and naloxone benzoylhydrazone (NalBzoH). J-113397 antagonized
Buprenorphine is widely used as an analgesic drug and it is also increasingly considered for maintenance and detoxification of heroin addicts. It is a potent micro -receptor partial agonist with a long duration of action. An inverted U-shaped dose-effect curve
Naunyn-Schmiedeberg's archives of pharmacology, 363(6), 583-589 (2001-06-21)
A novel receptor, the opioid receptor-like orphan receptor (ORL1), is homologous to, but distinct from, classical opioid receptors. Although initially developed as an opioid receptor ligand, naloxone benzoylhydrazone (NalBzOH) is one of the few antagonists at ORL1. The present electrophysiological
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.