Skip to Content
Merck
All Photos(1)

Documents

777676

Sigma-Aldrich

Graphene oxide dispersion

greener alternative

4 mg/mL,dispersion in H2O, avg. no. of layers, 1

Synonym(s):

GO dispersion in H2O

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
CxOyHz
UNSPSC Code:
12352103
NACRES:
NA.23

product name

Graphene oxide, 4 mg/mL, dispersion in H2O, avg. no. of layers, 1

description

dispersibility: Polar solvents

form

dispersion in H2O

feature

avg. no. of layers 1 measured in 0.5mg/mL (>95%)
avg. no. of layers 1

greener alternative product characteristics

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

sustainability

Greener Alternative Product

concentration

4 mg/mL

greener alternative category

SMILES string

O=C(O)C1C2=C3C4=C5C6=C7C8=C9C%10=C%11C(C%12=C%13C%10=C%14C8=C%15C6=C%16C4=C%17C2=CC(C(O)=O)C%18=C%17C%19=C%16C%20=C%15C%21=C%14C%22=C%13C(C%23=C%24C%22=C%25C%21=C%26C%20=C%27C%19=C%28C%18=CC(C(O)=O)C%29=C%28C%30=C%27C%31=C%26C%32=C%25C%33=C%24C(C%34=C%35C

InChI

1S/C140H42O20/c141-131(142)26-13-23-15-44-62(140(159)160)45-16-24-14-40-31(132(143)144)5-1-29-41-20-48(135(149)150)56-33-7-3-28-27-2-6-32-55-37(133(145)146)11-9-35-60(138(155)156)42-17-25-18-43-61(139(157)158)36-10-12-38(134(147)148)58-46-21-50(137(153)154)59-47-22-49(136(151)152)57-34-8-4-30-39(19-26)51(23)78-72(44)88-75(45)80-52(24)79(54(29)40)95-71(41)83(56)101-93-69(33)64(28)91-90-63(27)68(32)92-86(66(35)55)73(42)81-53(25)82-74(43)87(67(36)58)96-76(46)85(59)103-97-77(47)84(57)102-94-70(34)65(30)89(78)105-104(88)115-98(80)111(95)116(101)126-122-110(93)107(91)120-119-106(90)108(92)99(81)114-100(82)112(96)118(103)128(124(114)119)123-113(97)117(102)127(130(122)129(120)123)121(109(94)105)125(115)126/h2,5,7-10,12-22,26,38,48-50H,1,3-4,6,11H2,(H,141,142)(H,143,144)(H,145,146)(H,147,148)(H,149,150)(H,151,152)(H,153,154)(H,155,156)(H,157,158)(H,159,160)

InChI key

VTWITIAIMADGRM-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product belongs to Enabling category of greener alternatives thus aligns with "Design for energy efficency". High concentrated graphene oxide sheets provide the prerequisite viscosity to bind the electrode materials together and enable 3D printing. Using water as a green solvent makes this aqueous ink system feasible for processing and drying safety and low cost. Click here for more information.

Application

GO may be used to deliver a controlled dosage of bone morphogenetic protein-2 for bone regeneration. It may be used to fabricate graphene-based transparent conductive electrodes. GO is attractive for use in electronic devices. In addition to being the components in electronic devices, GO and rGO have been used in nanocomposite materials, polymer composite materials, energy storage, biomedical applications, catalysis and as surfactants.

Storage and Stability

Seal well, prevent from light and store it in a cool room.

Storage Class Code

12 - Non Combustible Liquids

WGK

WGK 1

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Customers Also Viewed

Kun Zhang et al.
Nature communications, 3, 1194-1194 (2012-11-15)
Reduction of graphene oxide at the nanoscale is an attractive approach to graphene-based electronics. Here we use a platinum-coated atomic force microscope tip to locally catalyse the reduction of insulating graphene oxide in the presence of hydrogen. Nanoribbons with widths
Akira Hafuka et al.
International journal of environmental research and public health, 16(11) (2019-06-04)
We investigated the adsorption characteristics of geosmin and 2-methylisoborneol (MIB) on graphene oxide (GO) in the absence and presence of natural organic matter (NOM). The graphene oxide had fast adsorption kinetics for both compounds because of its open-layered structure, with
Chian-Hui Lai et al.
Nanoscale, 11(44), 21119-21127 (2019-09-21)
An immunomagnetic "nano-net" was designed and synthesized for specifically capturing rare cells of interest from mixtures. The nano-net, Ab@Lipo-MNP-GO, consists of conjugated antibody molecules on a lipid coated magnetic nanoparticle-graphene oxide sheet complex. The magnetism, chemical composition, and the morphology
Liwen Ji et al.
Journal of the American Chemical Society, 133(46), 18522-18525 (2011-10-25)
The loss of sulfur cathode material as a result of polysulfide dissolution causes significant capacity fading in rechargeable lithium/sulfur cells. Here, we use a chemical approach to immobilize sulfur and lithium polysulfides via the reactive functional groups on graphene oxide.
Jeong-Ann Park et al.
Chemosphere, 207, 347-356 (2018-05-29)
Graphene oxide (GO)/poly(vinylidene fluoride) (PVDF) electrospun nanofibrous membranes (ENMs) have been fabricated to remove tetracycline (TC) from water via adsorptive-filtration. The pure water permeation flux of GO/PVDF ENMs (27,407-29,337 LMH/bar) was increased compared with that of PVDF ENMs. The flow

Articles

Graphene oxide, a monomolecular layer of graphite with oxygen functionalities, holds unique properties valuable for various applications in materials science.

CRISPR/Cas9 delivery via nonviral nanoparticles shows promising advancements for gene editing in disease treatment.

Professors summarize recent 2D materials synthesis advancements and biosensing applications in various fields.

Recent demand for electric and hybrid vehicles, coupled with a reduction in prices, has caused lithium-ion batteries (LIBs) to become an increasingly popular form of rechargeable battery technology.

See All

Related Content

Batteries, fuel cells, and supercapacitors rely on electrochemical energy production. Understand their operation and electron/ion transport separation.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service