SnS(2) nanocrystals with adjustable sizes were synthesized via a hydrothermal method from the aqueous solution of common and inexpensive SnCl(4)·5H(2)O, thioacetamide and citric acid, simply by varying the reaction temperature and reaction time. The structures, Brunauer-Emmett-Teller (BET) specific surface areas
SnS nanocrystals have been synthesized in a simple and facile way. Sn(6)O(4)(OH)(4) is introduced to synthesize tin sulfide, which is used as tin precursor. By changing the reaction conditions (reaction temperature and Sn/S molar ratio), SnS nanocrystals with different shape
We demonstrate a practical sensing platform, consisting of SnO(2) nanoparticle-decorated semiconducting single-walled carbon nanotubes assembled on gold electrodes via a dielectrophoretic process, for highly sensitive CO detection with fast response at room temperature. The highest sensitivity obtained was 0.27 and
Journal of nanoscience and nanotechnology, 11(4), 3215-3221 (2011-07-23)
SnS2 nanoparticles were synthesized through a simple wet chemical process at room temperature. The SnS2 nanoparticles were approximately spherical in shape and had diameter about 3-4 nm. SnS2-sensitized TiO2 electrodes were fabricated by the immersion of chemically modified TiO2 to
Journal of the American Chemical Society, 132(35), 12174-12175 (2010-08-19)
Semiconductor superlattice micro-/nanowires could greatly increase the versatility and power of modulating electronic (or excitonic, photonic) transport, optical properties. In this communication, we report growth of a semiconductor CdS/CdS:SnS(2) superlattice microwire through a coevaporation technique with microenvironmental control. Such a
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.