Direkt zum Inhalt
Merck
  • Behavioral and biochemical effects of the antidepressant bupropion (Wellbutrin): evidence for selective blockade of dopamine uptake in vivo.

Behavioral and biochemical effects of the antidepressant bupropion (Wellbutrin): evidence for selective blockade of dopamine uptake in vivo.

The Journal of pharmacology and experimental therapeutics (1980-10-01)
B R Cooper, T J Hester, R A Maxwell
ZUSAMMENFASSUNG

Bupropion (BW 323U; Wellbutrin), a novel compound with antidepressant effects in man, was found to reduce immobility in an "experimental helplessness" forced swimming antidepressant test in rats as did imipramine and amitriptyline. Higher doses produced elevated locomotor activity in an automated open field and produced stereotyped sniffing which was contrasted with apomorphine. When bupropion or desmethylimipramine was given before intracisternal injections of 6-hydroxydopamine, bupropion produced a dose-related selective antagonism of the destruction of dopamine neurons, while under the same conditions, desmethylimipramine produced a dose-related selective antagonism of the destruction of noradrenergic neurons. Studies in which the dose of bupropion and the dose of 6-hydroxydopamine were varied revealed that a dose-related selective antagonism of dopamine depletion by 6-hydroxydopamine occurred when doses up to and including 50 mg/kg i.p. to bupropion were administered. Some antagonism of norepinephrine depletion also occurred at 100 mg/kg of bupropion i.p. Bupropion also selectively reversed the dopamine depletion produced by alpha-methyl-m-tyrosine, a finding which is consistent with the view that bupropion is a dopamine uptake inhibitor in vivo. The importance of dopamine systems for the behavioral effects of bupropion were also studied. When the locomotor stimulant effects of bupropion were tested in rats with chronic destruction of dopamine neurons produced by 6-hydroxydopamine, bupropion failed to elevate locomotor activity. Rats treated with procedures using 6-hydroxydopamine to produce relatively selective norepinephrine depletions responded to bupropion with locomotor activity stimulation like controls. Rats with similar depletions of either dopamine or norepinephrine were also tested for the ability of low doses of bupropion to reduce immobility in the "experimental helplessness" forced swim antidepressant test. Prior destruction of dopamine neurons prevented activity of bupropion in this test. Results indicate that bupropion is a selective dopamine uptake inhibitor in vivo and that dopaminergic systems play an important role in its central nervous system pharmacology.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Bupropion -hydrochlorid, ≥98% (HPLC), solid