Direkt zum Inhalt
Merck

Measurement of monomer-oligomer distributions via fluorescence moment image analysis.

Biophysical journal (2006-08-29)
Mikhail Sergeev, Santiago Costantino, Paul W Wiseman
ZUSAMMENFASSUNG

We present higher-order moment analysis of fluorescence intensity fluctuations from individual laser scanning microscopy images applied to study monomer-oligomer distributions. We demonstrate that the number densities and brightness ratios of a mixed population of monomers and oligomers can be determined by analyzing higher-order moments of the fluorescence intensity fluctuations from individual images for specific ranges of densities and particle brightness ratios. Computer simulations and experiments with fluorescent microspheres and cells were performed to illustrate the detection limits and accuracy of this statistical approach. The simulation results show that the concentration of the dimer or oligomer population should be less than or equal to the monomeric concentration for the method to provide accurate results, and that the upper density detection limit of the population of monomers is one order-of-magnitude higher than the concentration of the oligomers. We implemented this technique to resolve two populations of fluorescent microspheres with different brightness ratios and we also applied the moment-analysis method to examine the distribution of aggregation states of PDGF-beta receptors in human fibroblast cells. The method was able to resolve a tetrameric population of the PDGF-beta receptors relative to the background distribution of nonspecifically bound fluorophore.