Direkt zum Inhalt
Merck
  • Autophagosome-lysosome fusion triggers a lysosomal response mediated by TLR9 and controlled by OCRL.

Autophagosome-lysosome fusion triggers a lysosomal response mediated by TLR9 and controlled by OCRL.

Nature cell biology (2016-07-12)
Maria Giovanna De Leo, Leopoldo Staiano, Mariella Vicinanza, Alessandro Luciani, Annamaria Carissimo, Margherita Mutarelli, Antonella Di Campli, Elena Polishchuk, Giuseppe Di Tullio, Valentina Morra, Elena Levtchenko, Francesca Oltrabella, Tobias Starborg, Michele Santoro, Diego Di Bernardo, Olivier Devuyst, Martin Lowe, Diego L Medina, Andrea Ballabio, Maria Antonietta De Matteis
ZUSAMMENFASSUNG

Phosphoinositides (PtdIns) control fundamental cell processes, and inherited defects of PtdIns kinases or phosphatases cause severe human diseases, including Lowe syndrome due to mutations in OCRL, which encodes a PtdIns(4,5)P2 5-phosphatase. Here we unveil a lysosomal response to the arrival of autophagosomal cargo in which OCRL plays a key part. We identify mitochondrial DNA and TLR9 as the cargo and the receptor that triggers and mediates, respectively, this response. This lysosome-cargo response is required to sustain the autophagic flux and involves a local increase in PtdIns(4,5)P2 that is confined in space and time by OCRL. Depleting or inhibiting OCRL leads to an accumulation of lysosomal PtdIns(4,5)P2, an inhibitor of the calcium channel mucolipin-1 that controls autophagosome-lysosome fusion. Hence, autophagosomes accumulate in OCRL-depleted cells and in the kidneys of Lowe syndrome patients. Importantly, boosting the activity of mucolipin-1 with selective agonists restores the autophagic flux in cells from Lowe syndrome patients.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
YU142670, ≥98% (HPLC)