Direkt zum Inhalt
Merck

Bacterial oxidation of the polycyclic aromatic hydrocarbons acenaphthene and acenaphthylene.

Applied and environmental microbiology (1984-07-01)
M J Schocken, D T Gibson
ZUSAMMENFASSUNG

A Beijerinckia sp. and a mutant strain, Beijerinckia sp. strain B8/36, were shown to cooxidize the polycyclic aromatic hydrocarbons acenaphthene and acenaphthylene. Both organisms oxidized acenaphthene to the same spectrum of metabolites, which included 1-acenaphthenol, 1-acenaphthenone, 1,2-acenaphthenediol, acenaphthenequinone, and a compound that was tentatively identified as 1,2-dihydroxyacenaphthylene. In contrast, acenaphthylene was oxidized to acenaphthenequinone and the compound tentatively identified as 1,2-dihydroxyacenaphthylene by the wild-type strain of Beijerinckia. Both of these products were also formed when the organism was incubated with synthetic cis-1,2-acenaphthenediol. A metabolite identified as cis-1,2-acenaphthenediol was formed from acenaphthylene by the mutant Beijerinckia sp. strain B8/36. Cell extracts prepared from the wild-type Beijerinckia strain contain a constitutive pyridine nucleotide-dependent dehydrogenase which can oxidize 1-acenaphthenol and 9-fluorenol. The results indicate that although acenaphthene and acenaphthylene are both oxidized to acenaphthenequinone, the pathways leading to the formation of this end product are different.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Acenaphthen, 99%
Sigma-Aldrich
Acenaphthylin, 99%