Direkt zum Inhalt
Merck
  • High fidelity neuronal networks formed by plasma masking with a bilayer membrane: analysis of neurodegenerative and neuroprotective processes.

High fidelity neuronal networks formed by plasma masking with a bilayer membrane: analysis of neurodegenerative and neuroprotective processes.

Lab on a chip (2011-06-29)
Heike Hardelauf, Julia Sisnaiske, Amir Ali Taghipour-Anvari, Peter Jacob, Evelyn Drabiniok, Ulrich Marggraf, Jean-Philippe Frimat, Jan G Hengstler, Andreas Neyer, Christoph van Thriel, Jonathan West
ZUSAMMENFASSUNG

Spatially defined neuronal networks have great potential to be used in a wide spectrum of neurobiology assays. We present an original technique for the precise and reproducible formation of neuronal networks. A PDMS membrane comprising through-holes aligned with interconnecting microchannels was used during oxygen plasma etching to dry mask a protein rejecting poly(ethylene glycol) (PEG) adlayer. Patterns were faithfully replicated to produce an oxidized interconnected array pattern which supported protein adsorption. Differentiated human SH-SY5Y neuron-like cells adhered to the array nodes with the micron-scale interconnecting tracks guiding neurite outgrowth to produce neuronal connections and establish a network. A 2.0 μm track width was optimal for high-level network formation and node compliance. These spatially standardized neuronal networks were used to analyse the dynamics of acrylamide-induced neurite degeneration and the protective effects of co-treatment with calpeptin or brain derived neurotrophic factor (BDNF).

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Calpeptin, ≥98% (HPLC)