Direkt zum Inhalt
Merck

STING manifests self DNA-dependent inflammatory disease.

Proceedings of the National Academy of Sciences of the United States of America (2012-11-08)
Jeonghyun Ahn, Delia Gutman, Shinobu Saijo, Glen N Barber
ZUSAMMENFASSUNG

Inflammatory autoimmune diseases such as systemic lupus erythematosus (SLE) and polyarthritis are characterized by chronic cytokine overproduction, suggesting that the stimulation of host innate immune responses, speculatively by persistent infection or self nucleic acids, plays a role in the manifestation of these disorders. Mice lacking DNase II die during embryonic development through comparable inflammatory disease because phagocytosed DNA from apoptotic cells cannot be adequately digested and intracellular host DNA sensor pathways are engaged, resulting in the production of a variety of cytokines including type I IFN. The cellular sensor pathway(s) responsible for triggering DNA-mediated inflammation aggravated autoimmune disease remains to be determined. However, we report here that Stimulator of IFN Genes (STING) is responsible for inflammation-related embryonic death in DNase II defective mice initiated by self DNA. DNase II-dependent embryonic lethality was rescued by loss of STING function, and polyarthritis completely prevented because cytosolic DNA failed to robustly trigger cytokine production through STING-controlled signaling pathways. Our data provides significant molecular insight into the causes of DNA-mediated inflammatory disorders and affords a target that could plausibly be therapeutically controlled to help prevent such diseases.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Desoxyribonuklease II aus Rindermilz, Type V, essentially salt-free, lyophilized powder, ≥1,000 units/mg protein
Sigma-Aldrich
Deoxyribonuclease II from porcine spleen, Type IV, lyophilized powder, 2,000-6,000 Kunitz units/mg protein (biuret)