Direkt zum Inhalt
Merck
  • Free-Radical Bulk-Photopolymerization Process as a Method of Obtaining Thermally Curable Structural Self-Adhesive Tapes and Effect of Used Type I Photoinitiators.

Free-Radical Bulk-Photopolymerization Process as a Method of Obtaining Thermally Curable Structural Self-Adhesive Tapes and Effect of Used Type I Photoinitiators.

Polymers (2020-09-30)
Konrad Gziut, Agnieszka Kowalczyk, Beata Schmidt
ZUSAMMENFASSUNG

A new fabrication method for thin (120 µm) thermally curable structural self-adhesive tapes (SATs) was demonstrated by utilizing a series of acrylic syrups (ASs) modified using Bisphenol A-based liquid epoxy resin. The acrylic syrups containing poly(butyl acrylate-co-butyl methacrylate-co-glycidyl methacrylate-co-2-hydroxyetyl acrylate-co-4-acryloyloxy benzophenone) were synthesized via free-radical bulk-photopolymerization (FRBP) process. Influence of different type I radical photoinitiators (PIs), i.e., α-hydroxyalkylphenones (HPs), acylphosphine oxides (APOs) and its mixtures (HPs/APOs and APO/APO) on selected physico-chemical features of obtained ASs was studied. It turned out that APO-type PIs are more effective in the FRBP process (NMR studies). Self-adhesive tests of SATs revealed that the monomers' conversion in ASs have a significant influence on adhesion and tack. Moreover, the polymer structures formed at the UV cross-linking stage of SATs significantly affect the cross-linking degree of SATs during thermal curing (differential scanning calorimetry method). The highest values of overlap shear strength were achieved by SATs based on ASs with monomers' conversion on the level 50-60%.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
2-Hydroxyethylacrylat, 96%, contains 200-650 ppm monomethyl ether hydroquinone as inhibitor