Direkt zum Inhalt
Merck

Src-mediated tyrosine phosphorylation of PRC1 and kinastrin/SKAP on the mitotic spindle.

Scientific reports (2021-01-30)
Mariko Morii, Sho Kubota, Chizu Hasegawa, Yumi Takeda, Shiori Kometani, Kyoko Enomoto, Takayuki Suzuki, Sayuri Yanase, Rika Sato, Aki Akatsu, Kensuke Hirata, Takuya Honda, Takahisa Kuga, Takeshi Tomonaga, Yuji Nakayama, Noritaka Yamaguchi, Naoto Yamaguchi
ZUSAMMENFASSUNG

Src-family tyrosine kinases (SFKs) play important roles in a number of signal transduction events during mitosis, such as spindle formation. A relationship has been reported between SFKs and the mitotic spindle; however, the underlying mechanisms remain unclear. We herein demonstrated that SFKs accumulated in the centrosome region at the onset of mitosis. Centrosomal Fyn increased in the G2 phase in a microtubule polymerization-dependent manner. A mass spectrometry analysis using mitotic spindle preparations was performed to identify tyrosine-phosphorylated substrates. Protein regulator of cytokinesis 1 (PRC1) and kinastrin/small kinetochore-associated protein (kinastrin/SKAP) were identified as SFK substrates. SFKs mainly phosphorylated PRC1 at Tyr-464 and kinastrin at Tyr-87. Although wild-type PRC1 is associated with microtubules, phosphomimetic PRC1 impaired the ability to bind microtubules. Phosphomimetic kinastrin at Tyr-87 also impaired binding with microtubules. Collectively, these results suggest that tyrosine phosphorylation of PRC1 and kinastrin plays a role in their delocalization from microtubules during mitosis.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Anti-Protein Disulfide Isomerase antibody produced in rabbit, IgG fraction of antiserum, buffered aqueous solution